Supplementary Material

Ruriko Yoshida Kenji Fukumizu Chrysafis Vogiatzis

February 24, 2016

1 Clustering and dimension reduction methods

1.1 Normalized cut

The input to the normalized cut framework is a weighted graph, with each edge weight expressing the dissimilarity between the nodes. More precisely, let G = (V, E) be a finite undirected weighted graph, where $V = \{1, \ldots, n\}$ is the node set and E is the edge set. Each node i corresponds to a data X_i , and the weight w_{ij} of an edge $(i, j) \in E$ represents the similarity of X_i and X_j . The goal of the normalized cuts is to provide a partition of V into K sets V_1, \ldots, V_K ($\bigcup_{a=1}^K V_a = V$ and $V_a \cap V_b = \emptyset$ for $a \neq b$) such that all the nodes in V_a are similar while the nodes in V_a and the nodes in V_b are dissimilar.

For simplicity, consider clustering of the nodes into two clusters A and B. To measure the total goodness of this partition, the normalized cut is defined as a normalization of Cut criterion Cut(A, B), which is defined by

$$\operatorname{Cut}(A,B) := \sum_{i \in A, j \in B} w_{ij}.$$

In graph theory, the problem of partitioning the nodes to minimize Cut(A, B) is called *minimum cut*. It is a well-studied problem, and efficient algorithms are known.

While the minimum cut can be a criterion of clustering, it is known that it tends to make a small cluster of isolated nodes. To solve this problem, Shi and Malik (2000) introduces the normalized cut Ncut(A, B) defined by

$$\operatorname{Ncut}(A,B) = \frac{\operatorname{Cut}(A,B)}{\operatorname{assoc}(A,V)} + \frac{\operatorname{Cut}(A,B)}{\operatorname{assoc}(B,V)},$$

where $\operatorname{assoc}(A, V) = \sum_{i \in A, j \in V} w_{ij}$ and $\operatorname{assoc}(B, V)$ is, of course, computed accordingly. The normalization by assoc avoids the large value of Ncut for a cluster of a small number of isolated points.

Computation of minimum Ncut is NP-complete if rigorously implemented, but a reasonable approximation with eigendecomposition is available. Let W be a symmetric matrix with elements w_{ij} , and D be a diagonal matrix with $D_{ii} = \sum_{j=1}^{n} W_{ij}$. Consider for simplicity the case of two clusters. By introducing a vector $u \in \{\pm 1\}^n$, where $u_i = 1$ and $u_i = -1$ mean $i \in A$ and $i \in B$, respectively, the Ncut can be restated by

$$\operatorname{Ncut}(A,B) = \frac{-\sum_{u_i>0, u_j<0} W_{ij} u_i u_j}{\sum_{u_i>0} D_{ii}} + \frac{-\sum_{u_i>0, u_j<0} W_{ij} u_i u_j}{\sum_{u_i<0} D_{ii}}.$$

Introducing a binary vector y such that $y_i = 1$ if $u_i = 1$ and $y_i = -b$ if $u_i = -1$, where $b = \sum_{u_i>0} D_{ii} / \sum_{u_j<0} D_{jj}$, one can see that the minimum Ncut is equivalent to

$$\min_{y \in \{1,-b\}^n} \frac{y^T (D-W) y}{y^T D y}$$

under the constraint

$$y^T D \mathbf{1}_n = 0$$

with $\mathbf{1}_n = (1, \ldots, 1)^T$. If we relax the condition $y \in \{1, -b\}^n$ by allowing continuous values for y, the above minimization is solved by the generalized eigenproblem:

$$(D - W)y = \lambda Dy.$$

Note that this problem has a trivial solution $y = \mathbf{1}_n$ and $\lambda = 0$. The constraint $y^T D \mathbf{1}_n = 0$ thus implies that the relaxed problem is solved by the eigenvector corresponding to the second smallest eigenvalue. An approximated solution to the normalized cut is then given by the discretization of the continuous y.

When we consider more than two clusters, we can apply the procedure recursively to the segmented parts. It is known that this is equivalent to use the eigenvectors corresponding to the other smallest eigenvalues for partitioning. For the details of the algorithm, see Shi and Malik (2000).

1.2 Kernel PCA

Kernel PCA (Schölkopf *et al.*, 1998) is one of the kernel methods, which use a positive definite kernel to define a feature map for extracting nonlinearity of data. A positive definite kernel k(x, y) is a function with two arguments such that the Gram matrix $(k(x_i, x_j))_{i,j=1}^n$ is positive semidefinite for any points x_1, \ldots, x_n in the data space. A kernel method in general applies some method of data analysis such as PCA to the feature vectors $\phi(X_i), \ldots, \phi(X_N)$, where ϕ is a feature map from the data space to a feature space. The feature space \mathcal{H} is a function space, called reproducing kernel Hilbert space, determined uniquely by the kernel k. It is known that the Hilbert space \mathcal{H} has a special inner product that satisfies the reproducing property; $\langle f, k(\cdot, x) \rangle = f(x)$ for any $f \in \mathcal{H}$ and point x. The feature map ϕ is defined by $\phi(x) = k(\cdot, x) \in \mathcal{H}$ so that the inner product of two feature vectors can be evaluated simply by the kernel value, i.e., $\langle \phi(x), \phi(y) \rangle = k(x, y)$.

With the simplified computation of the inner product, it is known (Schölkopf *et al.*, 1998) that the PCA on the feature vectors can be solved by the following generalized eigenproblem:

$$K^2 u = \lambda K u$$
 subject to $u^T K u = 1$ (1)

where K is the centered Gram matrix define by

$$K_{ij} = k(X_i, X_j) - \frac{1}{n} \sum_{b=1}^n k(X_i, X_b) - \frac{1}{n} \sum_{a=1}^n k(X_a, X_j) + \frac{1}{n^2} \sum_{a,b=1}^n k(X_a, X_b).$$

The *p*-th principal component of data point X_i is then given by

$$\sqrt{\lambda_p} u_{ip},$$

where u_p is the unit eigenvector of K corresponding to the p-th largest eigenvalue λ_p .

Kernel PCA has been applied to a wide variety of problems for the purpose of dimension reduction and data visualization. To list a few, they include a biological applications such as Popescu *et al.* (2014) and Reverter *et al.* (2014).

1.3 t-SNE

The t-SNE is a method of dimension reduction especially for data visualization (van der Maaten and Hinton, 2008). Given data points X_1, \ldots, X_n in a high dimensional Euclidean space, t-SNE first computes the probability $p_{j|i}$ that X_j is a neighbor of X_i :

$$p_{j|i} = \frac{\exp(-\frac{1}{2\sigma_i^2} ||X_i - X_j||^2)}{\sum_{k \neq i} \exp(-\frac{1}{2\sigma_i^2} ||X_i - X_k||^2)} \qquad (j \neq i)$$

and $p_{i|i} = 0$, where σ_i^2 is a bandwidth parameter depending on *i*. The similarity between X_i and X_j are then measured by

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}.$$

The goal of t-SNE is to provide a set of low dimensional representation Y_1, \ldots, Y_n such that their similarities are close to p_{ij} . The similarity of Y_i and Y_j are defined by

$$q_{ij} = \frac{(1 + \|Y_i - Y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|Y_k - Y_\ell\|^2)^{-1}}$$

Unlike $p_{j|i}$, the above similarity q_{ij} uses the form of heavy-tailed *t*-distribution. This aims at avoiding a so-called *crowding problem*: since a larger number of points can be equally similar in a higher-dimensional space, it is impossible to locate all such points in a lower-dimensional space. The heavy-tailed q_{ij} can assign larger similarity for apart points than the Gaussian-type similarity so that slightly more dissimilar objects can be located far apart. This works as a solution to the crowding problem.

The locations (Y_i) are optimized so that the Kullback-Leibler divergence of (q_{ij}) from (p_{ij}) is minimized;

$$\min_{(Y_i)} \sum_{ij} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$$

A gradient-based method is applied to numerical optimization of this objective function. A method for accelerating the optimization has been also proposed (van der Maaten, 2014).

The t-SNE method is known to work effectively for visualization of data in a two or three dimensional space, and has been applied to various problems including biological ones (Platzer, 2013, Amir *et al.*, 2013, Saadatpour *et al.*, 2014).

2 Comparison of clustering accuracy

Figure 1: Comparison of Ncut clustering accuracy between Euclidean distance and BHV tree space distance.

Figure 2: Comparison of K means clustering accuracy between Euclidean distance and BHV tree space distance.

Figure 3: Comparison of hierarchical clustering accuracy between Euclidean distance and BHV tree space distance.

Method Dim. Red. Distance 0.6 0.8 1.2 KPCA BHV 0.898 0.838 0.986 Euclid 0.666 0.850 0.960 t-SNE BHV 0.848 0.822 0.970 Euclid 0.732 0.860 0.962 Isomap BHV 0.722 0.570 0.976 Euclid 0.790 0.870 0.972 Direct BHV 0.722 0.570 0.972 Direct BHV 0.722 0.868 0.982 Euclid 0.750 0.828 0.982 KPCA BHV 0.506 0.522 0.530 MLE-GTR Euclid 0.750 0.828 0.934 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.786 0.784 0.802 MLE-GTR Euclid 0.750 0.782 0.638 MLE-GTR BHV 0.612 0.620					c	
KPCA BHV 0.898 0.838 0.986 Euclid 0.666 0.850 0.960 t-SNE BHV 0.848 0.822 0.970 Euclid 0.732 0.860 0.962 Isomap BHV 0.722 0.570 0.976 Euclid 0.790 0.870 0.972 Direct BHV 0.880 0.836 0.982 Euclid 0.782 0.868 0.962 Euclid 0.506 0.522 0.590 Euclid 0.506 0.522 0.580 MLE-GTR Euclid 0.750 0.778 0.824 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.716 0.918 Direct BHV 0.506 0.522 0.630 MLE-GTR KPCA BHV 0.506 0.522 0.638 Euclid 0.750 0.716 0.918 Direct BHV	Method	Dim. Red.	Distance	0.6	0.8	1.2
Herein Euclid 0.666 0.850 0.960 t-SNE BHV 0.848 0.822 0.970 Euclid 0.732 0.860 0.962 Isomap BHV 0.722 0.570 0.976 Euclid 0.790 0.870 0.972 Direct BHV 0.780 0.876 0.982 Euclid 0.782 0.866 0.962 Euclid 0.782 0.866 0.962 Euclid 0.506 0.522 0.590 Euclid 0.504 0.778 0.824 t-SNE BHV 0.722 0.652 0.886 MLE-GTR Euclid 0.750 0.828 0.934 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.786 0.776 0.918 Direct BHV 0.506 0.522 0.638 MLE-HKY Euclid 0.734 0.860 0.942 Isomap <td></td> <td>KPCA</td> <td>BHV</td> <td>0.898</td> <td>0.838</td> <td>0.986</td>		KPCA	BHV	0.898	0.838	0.986
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.666	0.850	0.960
NJp Euclid 0.732 0.860 0.962 Isomap BHV 0.722 0.570 0.976 Euclid 0.790 0.870 0.972 Direct BHV 0.880 0.836 0.982 Euclid 0.782 0.868 0.962 KPCA BHV 0.506 0.522 0.590 Euclid 0.504 0.778 0.824 t-SNE BHV 0.722 0.652 0.886 MLE-GTR Euclid 0.750 0.828 0.934 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.716 0.918 Direct BHV 0.612 0.620 0.736 Euclid 0.750 0.716 0.918 MLE-HKY Euclid 0.530 0.522 0.638 MLE-HKY Euclid 0.734 0.860 0.942 Isomap BHV 0.530 0.528 0.840		t-SNE	BHV	0.848	0.822	0.970
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	NJp		Euclid	0.732	0.860	0.962
Euclid 0.790 0.870 0.972 Direct BHV 0.880 0.836 0.982 Euclid 0.782 0.868 0.962 KPCA BHV 0.506 0.522 0.590 Euclid 0.504 0.778 0.824 t-SNE BHV 0.702 0.652 0.886 MLE-GTR Euclid 0.750 0.828 0.934 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.716 0.918 Direct BHV 0.612 0.620 0.736 Euclid 0.536 0.762 0.680 MLE-HKY Euclid 0.536 0.762 0.680 MLE-HKY Isomap BHV 0.506 0.522 0.638 MLE-HKY Isomap BHV 0.746 0.672 0.896 Euclid 0.734 0.860 0.942 0.946 MLE-HKY Isomap BHV 0.530<		Isomap	BHV	0.722	0.570	0.976
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.790	0.870	0.972
Euclid 0.782 0.868 0.962 KPCA BHV 0.506 0.522 0.590 Euclid 0.504 0.778 0.824 t-SNE BHV 0.722 0.652 0.886 MLE-GTR Euclid 0.750 0.828 0.934 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.716 0.918 Direct BHV 0.612 0.620 0.736 Euclid 0.750 0.722 0.638 MLE-HKY Store BHV 0.612 0.620 0.736 Euclid 0.754 0.860 0.942 0.894 MLE-HKY Euclid 0.734 0.860 0.942 Isomap BHV 0.530 0.528 0.840 Euclid 0.744 0.730 0.926 Direct BHV 0.616 0.620 0.762 Euclid 0.600 0.798 0.874		Direct	BHV	0.880	0.836	0.982
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.782	0.868	0.962
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		KPCA	BHV	0.506	0.522	0.590
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Euclid	0.504	0.778	0.824
MLE-GTR Euclid 0.750 0.828 0.934 Isomap BHV 0.522 0.530 0.800 Euclid 0.750 0.716 0.918 Direct BHV 0.612 0.620 0.736 Euclid 0.536 0.762 0.680 MLE-HKY Store 0.592 0.798 0.894 t-SNE BHV 0.746 0.672 0.896 MLE-HKY Euclid 0.734 0.860 0.942 Isomap BHV 0.530 0.528 0.840 Euclid 0.744 0.730 0.926 Direct BHV 0.616 0.620 0.762 Euclid 0.600 0.798 0.874 MLE-K80 Euclid 0.600 0.798 0.874 MLE-K80 Euclid 0.614 0.914 0.914 MLE-K80 Euclid 0.740 0.742 0.946 MLE-K80 Euclid 0.674 0.800		t-SNE	BHV	0.722	0.652	0.886
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MLE-GTR		Euclid	0.750	0.828	0.934
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Isomap	BHV	0.522	0.530	0.800
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.750	0.716	0.918
Euclid 0.536 0.762 0.680 KPCA BHV 0.506 0.522 0.638 Euclid 0.592 0.798 0.894 t-SNE BHV 0.746 0.672 0.896 MLE-HKY Euclid 0.734 0.860 0.942 Isomap BHV 0.530 0.528 0.840 Euclid 0.744 0.730 0.926 Direct BHV 0.616 0.620 0.762 Euclid 0.600 0.798 0.874 MLE-K80 KPCA BHV 0.616 0.620 0.762 Euclid 0.600 0.798 0.874 MLE-K80 Euclid 0.646 0.808 0.930 t-SNE BHV 0.530 0.530 0.866 Euclid 0.740 0.742 0.946 Direct BHV 0.614 0.510 0.780 Euclid 0.674 0.800 0.944 KPCA		Direct	BHV	0.612	0.620	0.736
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.536	0.762	0.680
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		KPCA	BHV	0.506	0.522	0.638
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Euclid	0.592	0.798	0.894
MLE-HKY Euclid 0.734 0.860 0.942 Isomap BHV 0.530 0.528 0.840 Euclid 0.744 0.730 0.926 Direct BHV 0.616 0.620 0.762 Euclid 0.600 0.798 0.874 KPCA BHV 0.506 0.522 0.696 Euclid 0.646 0.808 0.930 t-SNE BHV 0.730 0.876 0.942 MLE-K80 Euclid 0.646 0.808 0.930 t-SNE BHV 0.728 0.614 0.914 MLE-K80 Euclid 0.740 0.742 0.946 Isomap BHV 0.530 0.530 0.866 Euclid 0.674 0.800 0.944 Direct BHV 0.614 0.510 0.730 Euclid 0.674 0.800 0.940 1-SNE HV 0.506 0.522 0.730 Euclid		t-SNE	BHV	0.746	0.672	0.896
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MLE-HKY		Euclid	0.734	0.860	0.942
$\begin{tabular}{ c c c c c c c } \hline Euclid & 0.744 & 0.730 & 0.926 \\ \hline Direct & BHV & 0.616 & 0.620 & 0.762 \\ & Euclid & 0.600 & 0.798 & 0.874 \\ \hline Euclid & 0.600 & 0.798 & 0.874 \\ \hline Euclid & 0.646 & 0.808 & 0.930 \\ \hline t-SNE & BHV & 0.728 & 0.614 & 0.914 \\ & Euclid & 0.730 & 0.876 & 0.942 \\ \hline Isomap & BHV & 0.530 & 0.530 & 0.866 \\ & Euclid & 0.740 & 0.742 & 0.946 \\ \hline Direct & BHV & 0.614 & 0.510 & 0.780 \\ & Euclid & 0.674 & 0.800 & 0.944 \\ \hline NLE-K80 & Euclid & 0.658 & 0.816 & 0.940 \\ \hline t-SNE & BHV & 0.738 & 0.690 & 0.908 \\ & Euclid & 0.754 & 0.874 & 0.946 \\ \hline Isomap & BHV & 0.526 & 0.528 & 0.876 \\ \hline Euclid & 0.734 & 0.736 & 0.950 \\ \hline Direct & BHV & 0.616 & 0.624 & 0.788 \\ \hline Euclid & 0.690 & 0.802 & 0.946 \\ \hline \end{tabular}$		Isomap	BHV	0.530	0.528	0.840
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.744	0.730	0.926
$\begin{tabular}{ c c c c c c c } \hline Euclid & 0.600 & 0.798 & 0.874 \\ \hline Euclid & 0.506 & 0.522 & 0.696 \\ \hline Euclid & 0.646 & 0.808 & 0.930 \\ \hline t-SNE & BHV & 0.728 & 0.614 & 0.914 \\ \hline Euclid & 0.730 & 0.876 & 0.942 \\ \hline Isomap & BHV & 0.530 & 0.530 & 0.866 \\ \hline Euclid & 0.740 & 0.742 & 0.946 \\ \hline Direct & BHV & 0.614 & 0.510 & 0.780 \\ \hline Euclid & 0.674 & 0.800 & 0.944 \\ \hline \\ KPCA & BHV & 0.506 & 0.522 & 0.730 \\ \hline \\ Euclid & 0.658 & 0.816 & 0.940 \\ \hline \\ t-SNE & BHV & 0.738 & 0.690 & 0.908 \\ \hline \\ MLE-JC & Euclid & 0.754 & 0.874 & 0.946 \\ \hline \\ Isomap & BHV & 0.526 & 0.528 & 0.876 \\ \hline \\ Euclid & 0.734 & 0.736 & 0.950 \\ \hline \\ Direct & BHV & 0.616 & 0.624 & 0.788 \\ \hline \\ Euclid & 0.690 & 0.802 & 0.946 \\ \hline \end{tabular}$		Direct	BHV	0.616	0.620	0.762
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.600	0.798	0.874
$\begin{tabular}{ c c c c c c c } & Euclid & 0.646 & 0.808 & 0.930 \\ \hline t-SNE & BHV & 0.728 & 0.614 & 0.914 \\ & Euclid & 0.730 & 0.876 & 0.942 \\ \hline Isomap & BHV & 0.530 & 0.530 & 0.866 \\ & Euclid & 0.740 & 0.742 & 0.946 \\ \hline Direct & BHV & 0.614 & 0.510 & 0.780 \\ & Euclid & 0.674 & 0.800 & 0.944 \\ \hline & KPCA & BHV & 0.506 & 0.522 & 0.730 \\ & Euclid & 0.658 & 0.816 & 0.940 \\ \hline & t-SNE & BHV & 0.738 & 0.690 & 0.908 \\ \hline & HLE-JC & Euclid & 0.754 & 0.874 & 0.946 \\ \hline & Isomap & BHV & 0.526 & 0.528 & 0.876 \\ & Euclid & 0.734 & 0.736 & 0.950 \\ \hline & Direct & BHV & 0.616 & 0.624 & 0.788 \\ \hline & Euclid & 0.690 & 0.802 & 0.946 \\ \hline \end{tabular}$		KPCA	BHV	0.506	0.522	0.696
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.646	0.808	0.930
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		t-SNE	BHV	0.728	0.614	0.914
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MLE-K80		Euclid	0.730	0.876	0.942
$\begin{tabular}{ c c c c c c c } \hline Euclid & 0.740 & 0.742 & 0.946 \\ \hline Direct & BHV & 0.614 & 0.510 & 0.780 \\ & Euclid & 0.674 & 0.800 & 0.944 \\ \hline & Euclid & 0.674 & 0.800 & 0.944 \\ \hline & Euclid & 0.658 & 0.816 & 0.940 \\ \hline & Euclid & 0.658 & 0.816 & 0.940 \\ \hline & t-SNE & BHV & 0.738 & 0.690 & 0.908 \\ \hline & Euclid & 0.754 & 0.874 & 0.946 \\ \hline & Isomap & BHV & 0.526 & 0.528 & 0.876 \\ \hline & Euclid & 0.734 & 0.736 & 0.950 \\ \hline & Direct & BHV & 0.616 & 0.624 & 0.788 \\ \hline & Euclid & 0.690 & 0.802 & 0.946 \\ \hline \end{tabular}$		Isomap	BHV	0.530	0.530	0.866
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		_	Euclid	0.740	0.742	0.946
Euclid 0.674 0.800 0.944 KPCA BHV 0.506 0.522 0.730 Euclid 0.658 0.816 0.940 t-SNE BHV 0.738 0.690 0.908 MLE-JC Euclid 0.754 0.874 0.946 Isomap BHV 0.526 0.528 0.876 Direct BHV 0.616 0.624 0.788 Euclid 0.690 0.802 0.946		Direct	BHV	0.614	0.510	0.780
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Euclid	0.674	0.800	0.944
Euclid 0.658 0.816 0.940 t-SNE BHV 0.738 0.690 0.908 MLE-JC Euclid 0.754 0.874 0.946 Isomap BHV 0.526 0.528 0.876 Euclid 0.734 0.736 0.950 Direct BHV 0.616 0.624 0.788 Euclid 0.690 0.802 0.946		KPCA	BHV	0.506	0.522	0.730
t-SNE BHV 0.738 0.690 0.908 MLE-JC Euclid 0.754 0.874 0.946 Isomap BHV 0.526 0.528 0.876 Euclid 0.734 0.736 0.950 Direct BHV 0.616 0.624 0.788 Euclid 0.690 0.802 0.946			Euclid	0.658	0.816	0.940
MLE-JC Euclid 0.754 0.874 0.946 Isomap BHV 0.526 0.528 0.876 Euclid 0.734 0.736 0.950 Direct BHV 0.616 0.624 0.788 Euclid 0.690 0.802 0.946		t-SNE	BHV	0.738	0.690	0.908
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MLE-JC		Euclid	0.754	0.874	0.946
Euclid 0.734 0.736 0.950 Direct BHV 0.616 0.624 0.788 Euclid 0.690 0.802 0.946		Isomap	BHV	0.526	0.528	0.876
Direct BHV 0.616 0.624 0.788 Euclid 0.690 0.802 0.946		-	Euclid	0.734	0.736	0.950
Euclid 0.690 0.802 0.946		Direct	BHV	0.616	0.624	0.788
			Euclid	0.690	0.802	0.946

Table 1: Comparison: Ncut clustering

				c	
Method	Dim. Red.	Distance	0.6	0.8	1.2
	KPCA	BHV	0.780	0.838	0.992
		Euclid	0.618	0.856	0.966
	t-SNE	BHV	0.824	0.814	0.972
NJp		Euclid	0.738	0.860	0.964
-	Isomap	BHV	0.676	0.546	0.978
	_	Euclid	0.800	0.866	0.972
F	Direct	BHV	-	-	
		Euclid	0.782	0.840	0.966
	KPCA	BHV	0.582	0.618	0.742
		Euclid	0.504	0.782	0.856
F	t-SNE	BHV	0.744	0.612	0.870
MLE-GTR		Euclid	0.718	0.832	0.934
	Isomap	BHV	0.602	0.564	0.804
	_	Euclid	0.748	0.766	0.922
Ē	Direct	BHV	-	-	
		Euclid	0.548	0.734	0.682
	KPCA	BHV	0.608	0.622	0.750
		Euclid	0.574	0.802	0.924
F	t-SNE	BHV	0.688	0.664	0.908
MLE-HKY		Euclid	0.726	0.848	0.946
	Isomap	BHV	0.592	0.564	0.846
		Euclid	0.740	0.766	0.928
	Direct	BHV	-	-	
		Euclid	0.572	0.774	0.910
	KPCA	BHV	0.584	0.626	0.778
		Euclid	0.650	0.808	0.936
l l	t-SNE	BHV	0.746	0.622	0.916
MLE-K80		Euclid	0.668	0.884	0.940
	Isomap	BHV	0.590	0.562	0.856
		Euclid	0.752	0.774	0.946
	Direct	BHV	-	-	
		Euclid	0.696	0.796	0.950
	KPCA	BHV	0.614	0.618	0.788
		Euclid	0.676	0.810	0.940
MLE-JC	t-SNE	BHV	0.700	0.644	0.912
		Euclid	0.750	0.880	0.946
	Isomap	BHV	0.594	0.562	0.876
		Euclid	0.746	0.714	0.950
l l	Direct	BHV	-	-	
		Euclid	0.702	0.798	0.946

Table 2: Comparison: k-means clustering

				c	
Method	Dim. Red.	Distance	0.6	0.8	1.2
	KPCA	BHV	0.508	0.502	0.542
		Euclid	0.540	0.664	0.572
	t-SNE	BHV	0.546	0.692	0.976
NJp		Euclid	0.610	0.834	0.950
	Isomap	BHV	0.534	0.574	0.890
		Euclid	0.506	0.502	0.974
	Direct	BHV	0.510	0.502	0.522
		Euclid	0.524	0.502	0.560
	KPCA	BHV	0.504	0.572	0.572
		Euclid	0.522	0.648	0.568
	t-SNE	BHV	0.636	0.668	0.824
MLE-GTR		Euclid	0.648	0.700	0.932
	Isomap	BHV	0.514	0.544	0.516
		Euclid	0.502	0.582	0.524
	Direct	BHV	0.504	0.548	0.508
		Euclid	0.508	0.502	0.502
	KPCA	BHV	0.504	0.548	0.554
		Euclid	0.604	0.612	0.576
	t-SNE	BHV	0.652	0.620	0.910
MLE-HKY		Euclid	0.568	0.802	0.942
	Isomap	BHV	0.538	0.546	0.510
		Euclid	0.532	0.512	0.578
	Direct	BHV	0.502	0.508	0.508
		Euclid	0.508	0.510	0.502
	KPCA	BHV	0.504	0.520	0.554
		Euclid	0.598	0.572	0.550
	t-SNE	BHV	0.652	0.648	0.832
MLE-K80		Euclid	0.670	0.858	0.942
	Isomap	BHV	0.514	0.544	0.734
		Euclid	0.550	0.552	0.540
	Direct	BHV	0.510	0.508	0.514
		Euclid	0.510	0.502	0.502
	KPCA	BHV	0.504	0.544	0.554
MLE-JC		Euclid	0.540	0.654	0.556
	t-SNE	BHV	0.650	0.642	0.838
		Euclid	0.658	0.678	0.944
	Isomap	BHV	0.538	0.544	0.740
		Euclid	0.506	0.628	0.582
	Direct	BHV	0.512	0.508	0.514
		Euclid	0.512	0.508	0.536

Table 3: Comparison: hierarchical clustering (average linkage)

3 Experiments on dimension reduction

Several methods for dimension reduction were applied to the simulated data discussed in Section 3.1. Isomap (Tenenbaum *et al.*, 2000), Laplacian eigenmap (Belkin and Niyogi, 2001), KPCA, and t-SNE were applied to the distance matrix of the BHV tree space and the Euclidean distance matrix assuming the cone space. As tree reconstruction methods, NJp, MLE-GTR, MLE-HKY, and MLE-K80 were used. The results for c = 0.8 and 1.2 (ratio in the species depth) are shown. The blue and red colors respectively indicate the genes in each of the two species trees.

Figure 4: Dimension reduction, NJp, c=0.8 (upper half: BHV, lower half: Euclidean) 12

Figure 5: Dimension reduction, ML-GTR, c=0.8 (upper half: BHV, lower half: Euclidean) \$13\$

Figure 6: Dimension reduction, ML-HKY, c=0.8 (upper half: BHV, lower half: Euclidean) \$14\$

Figure 7: Dimension reduction, ML-K80, c=0.8 (upper half: BHV, lower half: Euclidean) \$15\$

Figure 8: Dimension reduction, NJp, c=1.2 (upper half: BHV, lower half: Euclidean) \$16\$

Figure 9: Dimension reduction, ML-GTR, c=1.2 (upper half: BHV, lower half: Euclidean) \$17\$

Figure 10: Dimension reduction, ML-HKY, c=1.2 (upper half: BHV, lower half: Euclidean) \$18\$

Figure 11: Dimension reduction, ML-K80, c=1.2 (upper half: BHV, lower half: Euclidean) 19

References

- E.D. Amir, K.L. Davis, M.D. Tadmor, E.F. Simonds, J.H. Levine, S.C. Bendall, D.K. Shenfeld, S. Krishnaswamy, G.P. Nolan, and D. Pe'er. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. *Nature Biotechnology*, 31(6):545–552, 2013.
- Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems, 14:586–691, 2001.
- A. Platzer. Visualization of SNPs with t-SNE. PLOS ONE, 2013.
- A.A. Popescu, A.L. Harper, Trick M., Bancroft I., and Huber K.T. A novel and fast approach for population structure inference using kernel-pca and optimization. *Genetics*, 198(4):1421–1431, 2014.
- F. Reverter, E. Vegas, and J.M. Oller. Kernel-PCA data integration with enhanced interpretability. BMC Systems Biology, 8((Suppl 2)):S6, 2014.
- A. Saadatpour, G. Guo, S.H. Orkin, and G.-C. Yuan. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. *Genome Biology*, 15(12):525, 2014.
- B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.
- J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.
- J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290:2319–2323, 2000.
- L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.
- L.J.P. van der Maaten. Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning Research, 15:3221–3245, 2014.