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1 Clustering and dimension reduction methods

1.1 Normalized cut

The input to the normalized cut framework is a weighted graph, with each
edge weight expressing the dissimilarity between the nodes. More precisely,
let G = (V,E) be a finite undirected weighted graph, where V = {1, . . . , n}
is the node set and E is the edge set. Each node i corresponds to a data
Xi, and the weight wij of an edge (i, j) ∈ E represents the similarity of Xi

and Xj . The goal of the normalized cuts is to provide a partition of V into
K sets V1, . . . , VK (∪Ka=1Va = V and Va ∩ Vb = ∅ for a 6= b) such that all
the nodes in Va are similar while the nodes in Va and the nodes in Vb are
dissimilar.

For simplicity, consider clustering of the nodes into two clusters A and
B. To measure the total goodness of this partition, the normalized cut is
defined as a normalization of Cut criterion Cut(A,B), which is defined by

Cut(A,B) :=
∑

i∈A,j∈B
wij .

In graph theory, the problem of partitioning the nodes to minimize Cut(A,B)
is called minimum cut. It is a well-studied problem, and efficient algorithms
are known.

While the minimum cut can be a criterion of clustering, it is known that
it tends to make a small cluster of isolated nodes. To solve this problem,
Shi and Malik (2000) introduces the normalized cut Ncut(A,B) defined by

Ncut(A,B) =
Cut(A,B)

assoc(A, V )
+

Cut(A,B)

assoc(B, V )
,
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where assoc(A, V ) =
∑

i∈A,j∈V wij and assoc(B, V ) is, of course, computed
accordingly. The normalization by assoc avoids the large value of Ncut for
a cluster of a small number of isolated points.

Computation of minimum Ncut is NP-complete if rigorously implemented,
but a reasonable approximation with eigendecomposition is available. Let
W be a symmetric matrix with elements wij , and D be a diagonal matrix
with Dii =

∑n
j=1Wij . Consider for simplicity the case of two clusters. By

introducing a vector u ∈ {±1}n, where ui = 1 and ui = −1 mean i ∈ A and
i ∈ B, respectively, the Ncut can be restated by

Ncut(A,B) =
−
∑

ui>0,uj<0Wijuiuj∑
ui>0Dii

+
−
∑

ui>0,uj<0Wijuiuj∑
ui<0Dii

.

Introducing a binary vector y such that yi = 1 if ui = 1 and yi = −b if
ui = −1, where b =

∑
ui>0Dii/

∑
uj<0Djj , one can see that the minimum

Ncut is equivalent to

min
y∈{1,−b}n

yT (D −W )y

yTDy

under the constraint
yTD1n = 0

with 1n = (1, . . . , 1)T . If we relax the condition y ∈ {1,−b}n by allowing
continuous values for y, the above minimization is solved by the generalized
eigenproblem:

(D −W )y = λDy.

Note that this problem has a trivial solution y = 1n and λ = 0. The con-
straint yTD1n = 0 thus implies that the relaxed problem is solved by the
eigenvector corresponding to the second smallest eigenvalue. An approxi-
mated solution to the normalized cut is then given by the discretization of
the continuous y.

When we consider more than two clusters, we can apply the procedure
recursively to the segmented parts. It is known that this is equivalent to use
the eigenvectors corresponding to the other smallest eigenvalues for parti-
tioning. For the details of the algorithm, see Shi and Malik (2000).

1.2 Kernel PCA

Kernel PCA (Schölkopf et al., 1998) is one of the kernel methods, which
use a positive definite kernel to define a feature map for extracting non-
linearity of data. A positive definite kernel k(x, y) is a function with two
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arguments such that the Gram matrix (k(xi, xj))
n
i,j=1 is positive semidefi-

nite for any points x1, . . . , xn in the data space. A kernel method in general
applies some method of data analysis such as PCA to the feature vectors
φ(Xi), . . . , φ(XN ), where φ is a feature map from the data space to a feature
space. The feature space H is a function space, called reproducing kernel
Hilbert space, determined uniquely by the kernel k. It is known that the
Hilbert space H has a special inner product that satisfies the reproducing
property; 〈f, k(·, x)〉 = f(x) for any f ∈ H and point x. The feature map φ
is defined by φ(x) = k(·, x) ∈ H so that the inner product of two feature vec-
tors can be evaluated simply by the kernel value, i.e., 〈φ(x), φ(y)〉 = k(x, y).

With the simplified computation of the inner product, it is known (Schölkopf
et al., 1998) that the PCA on the feature vectors can be solved by the fol-
lowing generalized eigenproblem:

K2u = λKu subject to uTKu = 1 (1)

where K is the centered Gram matrix define by

Kij = k(Xi, Xj)−
1

n

n∑
b=1

k(Xi, Xb)−−
1

n

n∑
a=1

k(Xa, Xj) +
1

n2

n∑
a,b=1

k(Xa, Xb).

The p-th principal component of data point Xi is then given by√
λpuip,

where up is the unit eigenvector of K corresponding to the p-th largest
eigenvalue λp.

Kernel PCA has been applied to a wide variety of problems for the
purpose of dimension reduction and data visualization. To list a few, they
include a biological applications such as Popescu et al. (2014) and Reverter
et al. (2014).

1.3 t-SNE

The t-SNE is a method of dimension reduction especially for data visualiza-
tion (van der Maaten and Hinton, 2008). Given data points X1, . . . , Xn in a
high dimensional Euclidean space, t-SNE first computes the probability pj|i
that Xj is a neighbor of Xi:

pj|i =
exp(− 1

2σ2
i
‖Xi −Xj‖2)∑

k 6=i exp(− 1
2σ2

i
‖Xi −Xk‖2)

(j 6= i)
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and pi|i = 0, where σ2i is a bandwidth parameter depending on i. The
similarity between Xi and Xj are then measured by

pij =
pj|i + pi|j

2n
.

The goal of t-SNE is to provide a set of low dimensional representation
Y1, . . . , Yn such that their similarities are close to pij . The similarity of Yi
and Yj are defined by

qij =
(1 + ‖Yi − Yj‖2)−1∑
k 6=`(1 + ‖Yk − Y`‖2)−1

.

Unlike pj|i, the above similarity qij uses the form of heavy-tailed t-distribution.
This aims at avoiding a so-called crowding problem: since a larger number of
points can be equally similar in a higher-dimensional space, it is impossible
to locate all such points in a lower-dimensional space. The heavy-tailed qij
can assign larger similarity for apart points than the Gaussian-type similar-
ity so that slightly more dissimilar objects can be located far apart. This
works as a solution to the crowding problem.

The locations (Yi) are optimized so that the Kullback-Leibler divergence
of (qij) from (pij) is minimized;

min
(Yi)

∑
ij

pij log
pij
qij
.

A gradient-based method is applied to numerical optimization of this ob-
jective function. A method for accelerating the optimization has been also
proposed (van der Maaten, 2014).

The t-SNE method is known to work effectively for visualization of data
in a two or three dimensional space, and has been applied to various prob-
lems including biological ones (Platzer, 2013, Amir et al., 2013, Saadatpour
et al., 2014).
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2 Comparison of clustering accuracy
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Figure 1: Comparison of Ncut clustering accuracy between Euclidean dis-
tance and BHV tree space distance.
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Figure 2: Comparison of K means clustering accuracy between Euclidean
distance and BHV tree space distance.
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Figure 3: Comparison of hierarchical clustering accuracy between Euclidean
distance and BHV tree space distance.

7



c
Method Dim. Red. Distance 0.6 0.8 1.2

KPCA BHV 0.898 0.838 0.986
Euclid 0.666 0.850 0.960

t-SNE BHV 0.848 0.822 0.970
NJp Euclid 0.732 0.860 0.962

Isomap BHV 0.722 0.570 0.976
Euclid 0.790 0.870 0.972

Direct BHV 0.880 0.836 0.982
Euclid 0.782 0.868 0.962

KPCA BHV 0.506 0.522 0.590
Euclid 0.504 0.778 0.824

t-SNE BHV 0.722 0.652 0.886
MLE-GTR Euclid 0.750 0.828 0.934

Isomap BHV 0.522 0.530 0.800
Euclid 0.750 0.716 0.918

Direct BHV 0.612 0.620 0.736
Euclid 0.536 0.762 0.680

KPCA BHV 0.506 0.522 0.638
Euclid 0.592 0.798 0.894

t-SNE BHV 0.746 0.672 0.896
MLE-HKY Euclid 0.734 0.860 0.942

Isomap BHV 0.530 0.528 0.840
Euclid 0.744 0.730 0.926

Direct BHV 0.616 0.620 0.762
Euclid 0.600 0.798 0.874

KPCA BHV 0.506 0.522 0.696
Euclid 0.646 0.808 0.930

t-SNE BHV 0.728 0.614 0.914
MLE-K80 Euclid 0.730 0.876 0.942

Isomap BHV 0.530 0.530 0.866
Euclid 0.740 0.742 0.946

Direct BHV 0.614 0.510 0.780
Euclid 0.674 0.800 0.944

KPCA BHV 0.506 0.522 0.730
Euclid 0.658 0.816 0.940

t-SNE BHV 0.738 0.690 0.908
MLE-JC Euclid 0.754 0.874 0.946

Isomap BHV 0.526 0.528 0.876
Euclid 0.734 0.736 0.950

Direct BHV 0.616 0.624 0.788
Euclid 0.690 0.802 0.946

Table 1: Comparison: Ncut clustering
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c
Method Dim. Red. Distance 0.6 0.8 1.2

KPCA BHV 0.780 0.838 0.992
Euclid 0.618 0.856 0.966

t-SNE BHV 0.824 0.814 0.972
NJp Euclid 0.738 0.860 0.964

Isomap BHV 0.676 0.546 0.978
Euclid 0.800 0.866 0.972

Direct BHV - -
Euclid 0.782 0.840 0.966

KPCA BHV 0.582 0.618 0.742
Euclid 0.504 0.782 0.856

t-SNE BHV 0.744 0.612 0.870
MLE-GTR Euclid 0.718 0.832 0.934

Isomap BHV 0.602 0.564 0.804
Euclid 0.748 0.766 0.922

Direct BHV - -
Euclid 0.548 0.734 0.682

KPCA BHV 0.608 0.622 0.750
Euclid 0.574 0.802 0.924

t-SNE BHV 0.688 0.664 0.908
MLE-HKY Euclid 0.726 0.848 0.946

Isomap BHV 0.592 0.564 0.846
Euclid 0.740 0.766 0.928

Direct BHV - -
Euclid 0.572 0.774 0.910

KPCA BHV 0.584 0.626 0.778
Euclid 0.650 0.808 0.936

t-SNE BHV 0.746 0.622 0.916
MLE-K80 Euclid 0.668 0.884 0.940

Isomap BHV 0.590 0.562 0.856
Euclid 0.752 0.774 0.946

Direct BHV - -
Euclid 0.696 0.796 0.950

KPCA BHV 0.614 0.618 0.788
Euclid 0.676 0.810 0.940

t-SNE BHV 0.700 0.644 0.912
MLE-JC Euclid 0.750 0.880 0.946

Isomap BHV 0.594 0.562 0.876
Euclid 0.746 0.714 0.950

Direct BHV - -
Euclid 0.702 0.798 0.946

Table 2: Comparison: k-means clustering
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c
Method Dim. Red. Distance 0.6 0.8 1.2

KPCA BHV 0.508 0.502 0.542
Euclid 0.540 0.664 0.572

t-SNE BHV 0.546 0.692 0.976
NJp Euclid 0.610 0.834 0.950

Isomap BHV 0.534 0.574 0.890
Euclid 0.506 0.502 0.974

Direct BHV 0.510 0.502 0.522
Euclid 0.524 0.502 0.560

KPCA BHV 0.504 0.572 0.572
Euclid 0.522 0.648 0.568

t-SNE BHV 0.636 0.668 0.824
MLE-GTR Euclid 0.648 0.700 0.932

Isomap BHV 0.514 0.544 0.516
Euclid 0.502 0.582 0.524

Direct BHV 0.504 0.548 0.508
Euclid 0.508 0.502 0.502

KPCA BHV 0.504 0.548 0.554
Euclid 0.604 0.612 0.576

t-SNE BHV 0.652 0.620 0.910
MLE-HKY Euclid 0.568 0.802 0.942

Isomap BHV 0.538 0.546 0.510
Euclid 0.532 0.512 0.578

Direct BHV 0.502 0.508 0.508
Euclid 0.508 0.510 0.502

KPCA BHV 0.504 0.520 0.554
Euclid 0.598 0.572 0.550

t-SNE BHV 0.652 0.648 0.832
MLE-K80 Euclid 0.670 0.858 0.942

Isomap BHV 0.514 0.544 0.734
Euclid 0.550 0.552 0.540

Direct BHV 0.510 0.508 0.514
Euclid 0.510 0.502 0.502

KPCA BHV 0.504 0.544 0.554
Euclid 0.540 0.654 0.556

t-SNE BHV 0.650 0.642 0.838
MLE-JC Euclid 0.658 0.678 0.944

Isomap BHV 0.538 0.544 0.740
Euclid 0.506 0.628 0.582

Direct BHV 0.512 0.508 0.514
Euclid 0.512 0.508 0.536

Table 3: Comparison: hierarchical clustering (average linkage)
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3 Experiments on dimension reduction

Several methods for dimension reduction were applied to the simulated data
discussed in Section 3.1. Isomap (Tenenbaum et al., 2000), Laplacian eigen-
map (Belkin and Niyogi, 2001), KPCA, and t-SNE were applied to the
distance matrix of the BHV tree space and the Euclidean distance matrix
assuming the cone space. As tree reconstruction methods, NJp, MLE-GTR,
MLE-HKY, and MLE-K80 were used. The results for c = 0.8 and 1.2 (ra-
tio in the species depth) are shown. The blue and red colors respectively
indicate the genes in each of the two species trees.
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Figure 4: Dimension reduction, NJp, c = 0.8 (upper half: BHV, lower half:
Euclidean) 12
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Figure 5: Dimension reduction, ML-GTR, c = 0.8 (upper half: BHV, lower
half: Euclidean) 13
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Figure 6: Dimension reduction, ML-HKY, c = 0.8 (upper half: BHV, lower
half: Euclidean) 14
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Figure 7: Dimension reduction, ML-K80, c = 0.8 (upper half: BHV, lower
half: Euclidean) 15
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Figure 8: Dimension reduction, NJp, c = 1.2 (upper half: BHV, lower half:
Euclidean) 16
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Figure 9: Dimension reduction, ML-GTR, c = 1.2 (upper half: BHV, lower
half: Euclidean) 17
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Figure 10: Dimension reduction, ML-HKY, c = 1.2 (upper half: BHV, lower
half: Euclidean) 18
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Figure 11: Dimension reduction, ML-K80, c = 1.2 (upper half: BHV, lower
half: Euclidean) 19
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