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Abstract

A double saddlepoint approximation is proposed for the number

of contingency tables with counts satisfying certain linear constraints.

Computation of the approximation involves fitting a generalized lin-

ear model for geometric responses which can be accomplished almost

instantaneously using the iterated weighted least squares algorithm.

The approximation is far superior to other analytical approximations

that have been proposed, and is shown to be highly accurate in a range

of examples, including some for which analytical approximations were

previously unavailable. A similar approximation is proposed for tables

consisting of only zeros and ones based on a logistic regression model.

A higher-order adjustment to the basic double saddlepoint further im-

proves the accuracy of the approximation in almost all cases.

Keywords: Contingency tables; Darwin’s finch data; Generalized lin-

ear model; Uniform association; Quasi-independence.

1. Introduction

Let {yij} denote the counts in an r × c contingency table. How many

tables are there with the same row and column margins? Gail & Mantel

∗Ph.D. Student, Department of Statistical Science, Cornell University
†Professor, Biological Statistics and Computational Biology, Cornell University. Email:

Jim.Booth@Cornell.edu
‡Assistant Professor, Department of Statistics, University of Kentucky

1



(1977) proposed the following approximation obtained via an application of

the central limit theorem.

Let (Yi1, . . . , Yic) denote a random vector that assigns equal probability

to every ordered set of c non-negative integers summing to yi·, independently

for i = 1, . . . , r. Then

E(Yij) = yi·/c ,

var(Yij) = yi·(yi· + c)(c − 1)/(c + 1)c2 ,

cov(Yij, Yik) = −yi·(yi· + c)/(c + 1)c2 .

It follows that the column sums, Y·1, . . . , Y·c, are identically distributed and

equicorrelated with

E(Y·j) = y··/c ,

σ2 = var(Y·j) =
r∑

i=1

yi·(yi· + c)(c − 1)/(c + 1)c2 ,

cov(Y·j, Y·k) = −σ2/(c − 1) .

Hence, the multivariate normal approximation to the conditional probability

of the observed vector of column marginal totals given the row totals is

p(y·1, . . . , y·c) = ((c − 1)/2πσ2c)(c−1)/2c1/2 exp(−Q/2) ,

where Q = ((c − 1)/σ2c)(
∑c

j=1 y2
·j − y2

··/c). The total number of tables with

unrestricted column totals is

N =
r∏

i=1

(
yi· + c − 1

c − 1

)
. (1)

The Gail and Mantel approximation to the number of tables with the same

row and column margins as {yij} is then N × p.
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As an example, Gail and Mantel consider the 4 × 3 table with row and

column margins {20, 10, 5, 5} and {11, 10, 19} respectively. Then the ap-

proximation gives 21,469 tables, which is in good agreement with the exact

number, 22,245. However, the approximation is not symmetric in the rows

and columns. If the approximation is applied to the transpose of the con-

tingency table the approximation to the number of tables is 11,933, which

is far from the correct answer. To be fair, the approximation can be ex-

pected to work well when the number of rows (or columns) being averaged

over is large relative to the number of columns (or rows), and so it is not

surprising that the approximation based on averaging over rows is better in

this instance. As another example, consider the 5 × 5 table of pathologists

ratings from Holmquist et al. (1967) (see also Agresti, 1990, p.368). In this

case the row and column margins are {26, 26, 38, 22, 6}, and {27, 12, 69, 7, 3},

respectively. The normal approximation gives 12.5 billion tables, and 261

billion after transposing the rows and columns. The correct answer in this

case is 193,316,293,000, which was computed using exact algebraic methods.

An alternative analytical approximation for the number of two-way con-

tingency tables with fixed margins is given in Diaconis & Efron (1985). How-

ever, this approximation can also be quite inaccurate. Holmes & Jones (1996)

give an example of a 5× 4 table with row margins, {9, 49, 182, 478, 551}, and

column margins, {9, 309, 355, 596}. In this case the exact number of possible

tables is 33,819,042,818,100,768 or 3.382×1016 to four significant figures. Ap-

plying the Diaconis-Efron formula results in the approximations, 1.319×1017,

and 4.126×1016, after switching rows and columns. Thus, the Diaconis-Efron

formula is in error by at least 20%.

In this paper we propose a double-saddlepoint approximation to the num-

ber of contingency tables whose counts meet certain linear constraints. The
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approximation is based on a probabilistic formulation involving a geometric

generalized linear model. Computing the approximation involves fitting the

generalized linear model (GLM) which can be accomplished essentially in-

stantaneously. The approximation is shown to be extremely accurate in a

range of examples, with the relative error generally less than 5%. For exam-

ple, the approximation to the number of tables with the pathologists ratings

table margins is 205 billion. Transposing the table makes little difference re-

sulting in a value of 202 billion. For the data from Gail & Mantel (1977) the

corresponding approximations are 20,321 and 21,536, and for the data from

Holmes & Jones (1996) the approximations are respectively 3.303× 1016 and

3.428× 1016. However, in almost all cases the approximation is improved by

using an easily computed higher-order correction to the double saddlepoint.

An outline of the paper is as follows. In Section 2 we discuss the formula-

tion of the counting problem for two-way tables with fixed margins in terms

of a geometric generalized linear model. The double saddlepoint approxi-

mation and higher-order correction are described in Section 3. The GLM

formulation is then generalized to include multi-way tables and tables with

additional constraints in Section 4. Results for several examples are pre-

sented in Section 5. A similar approximation for tables containing only zeros

and ones based on a logistic GLM probabilistic formulation is presented in

Section 6. Exact algebraic and importance sampling methods for table count-

ing are discussed briefly in Section 7. The paper concludes in Section 8 with

some discussion.
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2. GLM Formulation

Let Y be a geometric random variable with success probability, π. Then,

µ = E(Y ) = (1 − π)/π, and for y = 0, 1, . . .,

P (Y = y) = (1 − π)yπ

=

(
µ

µ + 1

)y
1

µ + 1

= exp
{
yθ + log(1 − eθ)

}
,

where θ = log(µ) − log(µ + 1) is the canonical parameter. If Y1, . . . , Yc are

i.i.d. geometric random variables, then their sum, Y·, is negative binomial

with mass function,

P (Y· = y·) =

(
y· + c − 1

c − 1

)
(1 − π)y·πc

for y· = 0, 1, . . .. It follows that the conditional distribution of (Y1, . . . , Yc)

given Y· = y· is given by

P (Y1 = y1, . . . , Yc = yc|Y· = y·) =

(
y· + c − 1

c − 1

)−1

,

for all non-negative count vectors, (y1, . . . , yc), summing to y·.

Now, let {Yij} be a table of counts whose entries are independent ge-

ometric random variables with canonical parameters, {θij}. Consider the

generalized linear model,

θij = λ + λR
i + λC

j (2)

for i = 1, . . . , r and j = 1, . . . , c, where R and C denote the nominal-scale

row and column factors. Notice that the row and column margins are suf-

ficient statistics for this model. Hence, the conditional distribution of the

table counts given the margins is the same regardless of the values of the
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parameters in the model. In particular, suppose that the column effects are

all equal, λC
1 = · · · = λC

c = 0 say. In this case the counts in each row of

the table are i.i.d.. Furthermore, after conditioning on a row margin, the

probabilities of all ordered sets of counts summing to the margin are equal.

3. Double-Saddlepoint Approximation

The double-saddlepoint approximation provides an accurate alternative

to the normal approximation which can be formulated in terms of the GLM

described in the previous section. In general, for a exponential family model

(or a GLM with canonical link), the probability density of the sufficient

statistic vector, S, can be approximated by the formula

f̂S(s) = |2πÎ|−1/2 exp(−l̂) , (3)

where l̂ is the maximized loglikelihood, and Î is the observed information

matrix. This formula is originally due to Daniels (1954), although he didn’t

express it in likelihood notation. In our case we want to approximate a

conditional probability for the column margins, s2, given the row margins, s1,

where s = (s1, s2). This is accomplished by taking a ratio of two saddlepoint

approximations of the form (3),

f̂(s2|s1) =
f̂S(s)

f̂S1
(s1)

=

{
|2πÎ|

|2πÎ1|

}−1/2

exp(l̂1 − l̂) , (4)

where l̂1 is the constrained maximum of the loglikelihood, when the column

effects parameters in (2) are all zero.

For the pathologists’ ratings data, application of (4) results in the ap-

proximation p = 7.765 × 10−10. The formula (1) for the number of tables

with the same row margins yields N = 2.639× 10+20. Multiplying these two
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numbers leads to an approximate number of tables with the same margins

equal to 204.9 billion.

Adding higher order terms to the saddlepoint approximation improves its

accuracy, at least asymptotically. We now consider two ways of correcting

(3), both discussed in Butler (2007). The first is an additive correction,

f̃1(s) = f̂S(s)(1 + O) ,

and the second is its exponential counterpart suggested by McCullagh (1987,

Section 6.3)

f̃2(s) = f̂S(s)eO .

The correction term, O, is given by the formula (Butler, 2007, Section 3.2.2)

O =
1

8
κ̂4 −

1

24
(2κ̂2

23 + 3κ̂2
13) (5)

where

κ̂4 =
∑

i,j,k,l

K̂ijklK̂
ijK̂kl , (6)

κ̂2
13 =

∑

i,j,k,r,t,u

K̂ijkK̂rtuK̂
ijK̂krK̂tu , κ̂2

23 =
∑

i,j,k,r,t,u

K̂ijkK̂rtuK̂
irK̂jtK̂ku , (7)

and

K̂ijk = −
∂3l(ŝ)

∂si∂sj∂sk

, K̂ij = (Î−1)ij .

In the case of the double-saddlepoint approximation using the correction in

the numerator and denominator leads to

f̃1(s2|s1) = f̂(s2|s1)(1 + Os1,s2 − Os1) (8)
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and

f̃2(s2|s1) = f̂(s2|s1) exp{Os1,s2 − Os1} (9)

respectively. The estimated number of the tables is then

Ñi(s1, s2) = N(s1)f̃i(s2|s1) , (10)

for i = 1, 2, where we assume that N(s1), the exact number of the tables

with a fixed s1, is known.

Naive computation of the summations in (6) and (7), that are required

for the correction terms, respectively involves O(p4) and O(p6) operations,

a potentially time consuming task if p is large. However, the vast majority

of the terms in these sums are zero. It is shown in the Appendix that this

sparseness can be exploited, resulting in computational times that are almost

instantaneous.

4. Multi-way Tables and Additional Constraints

It is clear, in principle, that the double saddlepoint approximation extends

to multi-way tables, since the number of tables with one margin fixed is also

known in this case. In addition, it is often the case that the independence

assumption for a two-way (or multi-way) contingency table is unreasonable.

In such cases one can attempt to describe the dependence in a parsimonious

way by placing restrictions on interaction terms.

The most general setting is as follows. Consider the set Γ consisting

of all non-negative integer vectors, y, satisfying a set of linear constraints,

XTy = s, where X ∈ Zd×f and s ∈ Zf ; that is,

Γ :=
{
y ∈ Z

d : XTy = s,y ≥ 0
}

.
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We assume, without loss of generality that X is full column rank. For exam-

ple, if y consists of the counts from an r × c table with fixed margins, then

d = rc and f = r+c−1. Suppose X = (X1,X2) is a partition of the columns

of X, and let (s1, s2) = (XT
1 y,XT

2 y) be the corresponding partition of s.

Suppose that the cardinality of the set Γ1 :=
{
y ∈ Zd : XT

1 y = s1,y ≥ 0
}

is

known. Then the double saddlepoint approximation described in the previ-

ous section, and its corrected version (10), can be used to approximate the

cardinality of Γ.

The most general loglinear association model for an r × c contingency

table has a canonical linear predictor of the form

θij = λ + λR
i + λC

j + λRC
ij (11)

for i = 1, . . . , r and j = 1, . . . , c. A special case is the uniform association

(UA) model in which λRC
ij = βij. This model describes the dependence be-

tween the row and column factors in terms of a single parameter, β. The

model implies that all local odds-ratios (from tables formed by the intersec-

tion of two adjacent rows and two adjacent columns) are equal to eβ – hence

the name “uniform association”. The sufficient statistics for the UA model

include the row and column margins and, in addition, the sum of products

of row and column numbers weighted by the cell counts. Other examples in-

clude quasi-independence (QI), λRC
ij = 0 if i 6= j, and diagonal (D), λRC

ij = 0

if i 6= j and λRC
ii = λ, association models.

The generalization of (11) to a three-way, I × J × K, contingency table

is

θijk = λ + λR
i + λC

j + λZ
k + λRC

ij + λRZ
ik + λCZ

jk + λRCZ
ijk (12)

for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K, where Z denotes the

nominal-scale factor associated with the third dimension. As in the two-

9



way case associations between the three factors are modeled by placing re-

strictions on the interaction terms. Some widely-used examples are given in

Table 1. The models are nested in the sense that each successive model im-

poses a subset of the restrictions in the previous one. Since, the dimension of

the statistic, s, increases with the model complexity, the number of possible

tables with the same value of s decreases.

Model Interaction constraints
1. (R,C,Z) λRCZ

ijk = 0 λRZ
ik = 0 λCZ

jk = 0 λRC
ij = 0

2. (RC,Z) λRCZ
ijk = 0 λRZ

ik = 0 λCZ
jk = 0

3. (RC,CZ) λRCZ
ijk = 0 λRZ

ik = 0
4. (RC,RZ,CZ) λRCZ

ijk = 0

Table 1: Some common loglinear association models for three-way tables (see
Agresti, 1990, p.144). Model 1 implies the factors, R, C, and Z, are mutually
independent; Model 2 implies Z is jointly independent of R and C; Model 3
implies R and Z are conditionally independent given C; and Model 4 implies
a homogeneous pattern of conditional association between R and C across
all levels of Z.

5. Examples

To approximate the number of r × c tables with fixed marginal totals

and additional constraints we can apply the formula (4) with s equal to the

full vector of sufficient statistics and s1 equal to the sub-vector of row (or

column) marginal totals. This results in an approximation to the conditional

probability that the column marginal totals and the additional sufficient

statistic take their observed values conditional on the row margins. This,

in turn, can be multiplied by the known number of tables with the same

row margins to get an approximation to the number of tables meeting all

sufficiency constraints. The same approach can be applied in multi-way
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tables with s1 equal to any one of the table margins.

Tables 2, 3 and 4 summarize the accuracy of the double saddlepoint ap-

proximation, and the additive and exponential corrections, for approximat-

ing the numbers of contingency tables with different linear constraints on the

counts. Table 2 concerns 5× 5 tables constrained to have the same sufficient

statistics as the pathologists’ ratings data assuming I, UA, QI and D loglinear

association models. Table 3 gives the analogous results for 4× 4 tables using

the sexual fun data reported in Hout et al. (1987) (see also Agresti, 1990,

p.32). Table 4 gives results for 2 × 2 × 8 tables with sufficiency constraints

equal to those from a smoking and lung cancer study in eight Chinese cities

(Agresti, 1996, p.60).

The value tabulated for each approximation is its accuracy, defined as

(signed) percentage relative error

PRE(N̂) = 100 ×
N̂ − N

N

where N is the exact number of the tables satisfying the relevant set of con-

straints. In every case the exponentially corrected approximation is the most

accurate, and in many cases the improvement over the uncorrected double

saddlepoint is substantial. Also, the exponentially corrected approximation

does not appear to be affected much by which margin is conditioned upon.

In general the accuracy of the approximation decreases with the dimension

of the statistic, s, relative to the number of cells in the table. This is to

be expected because, the larger the dimension of s, the fewer counts being

summed over. In Table 4, the dimension of the statistic s is equal to the

number of parameters in each association model. The least accurate approx-

imation was for the homogeneous association model, (RC,RZ,CZ), which, for

a 2 × 2 × 8 table, has 25 parameters.

11



Model Margin N̂ Ñ1 Ñ2 N
I Row +4.18 −3.36 −3.10 1.933 × 1011

Column +5.92 −3.51 −3.11
UA Row +16.17 −8.78 −6.28 34,670

Column +14.26 −9.02 −6.80
QI Row +31.12 −9.19 −3.58 435

Column +45.11 −14.29 −3.63
D Row +23.08 −7.59 −4.07 1,132,576

Column +21.07 −7.09 −4.06

Table 2: Percentage relative errors of the double saddlepoint approximation,
and higher-order corrections, for the numbers of 5 × 5 tables meeting the
same set of linear constraints as the pathologists’ ratings data from Agresti
(1990, p.368)

Model Margin N̂ Ñ1 Ñ2 N
I Row −12.61 −1.95 −1.27 947, 766, 430

Column −12.67 −1.95 −1.27
UA Row −12.08 −2.32 −1.76 8, 137, 492

Column −12.15 −2.33 −1.76
QI Row +27.64 −12.00 −6.43 15,708

Column +27.55 −11.97 −6.43
D Row −13.79 −3.83 −3.24 27,209,031

Column −13.85 −3.84 −3.24

Table 3: Percentage relative errors of the double saddlepoint approximation,
and higher-order corrections, for the numbers of 4×4 tables meeting the same
set of linear constraints as the sexual fun data from Agresti (1990, p.32)
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Model Margin N̂ Ñ1 Ñ2 N
(R,C,Z) I × JK +3.93 −0.12 −0.04 3.918 × 1054

J × IK +3.93 −0.12 −0.04
K × IJ −11.06 −0.64 −0.01

(RC,Z) I × JK +4.85 −1.22 −1.05 2.530 × 1051

J × IK +4.85 −1.22 −1.05
K × IJ −10.28 −1.46 −1.02

(RC,CZ) I × JK +63.83 −24.37 −4.37 3.425 × 1033

J × IK +63.83 −24.37 −4.37
K × IJ +40.18 −13.38 −4.34

(RC,RZ,CZ) I × JK +135.35 −85.14 −7.77 2.262 × 1015

J × IK +135.35 −85.14 −7.77
K × IJ +101.37 −55.82 −7.74

Table 4: Percentage relative errors of the double saddlepoint approximation,
and higher order corrections, for the numbers of 2 × 2 × 8 tables with the
same sufficient statistics as the Chinese smoking and lung cancer data from
Agresti (1996, p.60) under various loglinear association models.

6. Counting Tables of Zeros and Ones

The number of tables with only 0-1 entries meeting linear constraints can

be also be approximated based on a GLM formulation. This case requires

a logistic model for binary observations instead of the geometric model dis-

cussed above. Specifically, suppose that {Yij} is an r×c table of independent

binary counts with associated success probabilities {πij}. Consider a model of

the form (2), where θ is now the logit of π. Once again the marginal totals are

the sufficient statistics, and hence the conditional distribution given the mar-

gins is independent of the parameters. In particular, if λC
1 = · · · = λC

c = 0,

the conditional distribution of the counts in each row, given the row margins,

is uniform over the set of all possible assignments of the zeros and ones; that

is, every possible assignment in row i has probability
(

c
yi·

)−1
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Margin N̂ Ñ1 Ñ2 N
Row 302.9 −258.1 0.131 6.715 × 1016

Column 238.3 −174.0 0.030

Table 5: Percentage relative errors of the double saddlepoint approximation,
and higher-order corrections, for the number of 13 × 17 tables of zeros and
ones with the same margins as Darwin’s finch data.

For an illustration, consider Darwin’s data concerning the presence or

absence of 13 species of finch in 17 Galápagos islands (see Liu, 2001, p.93).

The exact number of tables with the same margins as this dataset is given in

Chen et al. (2005, Section 6.1). To four significant figures it is 6.715 × 1016.

Percentage relative errors of the double saddlepoint approximation, and the

additive and exponential corrections are given in Table 5. In this case the un-

corrected double saddlepoint is off by over 200%, and the additive correction

over-corrects, resulting in a negative estimate. However, the exponentially

corrected double saddlepoint is almost exact, with a relative error signifi-

cantly less than 1%.

7. Other Counting Methods

7·1. Exact Algebraic Computation

The problem of counting the number of contingency tables meeting cer-

tain linear constraints is equivalent to counting the set of integral points of

a rational convex polytope of the form

P :=
{
y ∈ R

d : XTy = s,y ≥ 0
}

,

where X ∈ Zd×f and s ∈ Zf . If we now define the generating function,

f(P ;y) =
∑

α∈P∩Zd

yα ,
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then |P ∩ Zd| = f(P ;1).

As an example, suppose that P is the one-dimensional polytope [0, N ].

Then, f(P ; x) = 1 + x + x2 + · · ·+ xN , f(P ; x) can be represented by the ra-

tional function 1−xN+1

1−x
, and f(P ; 1) = N + 1, the number of integer points in

P . Note that substituting x = 1 yields a denominator equal to zero in the ra-

tional function, so some analytic technique must be used to evaluate f(P ; 1).

In this particular case, we could take the limit as x approaches 1 and apply

l’Hospital’s rule. In general, we must use more complicated residue calculus

as described in Barvinok (1994). The exact answers for the examples in Ta-

bles 2 and 3 each took less than 30 seconds using a C++ implementation of

Barvinok’s algorithm available at http://www.math.ucdavis.edu/∼latte

(DeLoera et al., 2004). For the examples in Table 4 the computations took

4450, 1209, and 85 seconds for Models 1-3 respectively, and less than 1 sec-

ond for Model 4. Other analytical methods have been developed which are

faster in special cases such as counting two-way tables with fixed margins

(Beck, 2000). For a recent review, see Yoshida (2004). The computing time

for algebraic methods can be prohibitive for larger tables. However, this is

precisely the situation in which the saddlepoint approximation is likely to be

most accurate because the dimension of s relative to the number of cells in

the table decreases as the dimensions of the table grow.

7·2. Importance Sampling

Let q : Γ → R be a probability mass function which assigns positive

probability to all vectors, y, in the finite set Γ. Then the cardinality of Γ

can be expressed as

|Γ| =
∑

y∈Γ

1 =
∑

y∈Γ

1

q(y)
q(y) = Eq

{
1

q(y)

}
.
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Hence, if it is possible to simulate an i.i.d. sequence, y1 . . . ,yN , from q, and

to evaluate, q(yi), i = 1, . . . , N , then a Monte Carlo approximation to |Γ| is

given by

|̂Γ| =
1

N

N∑

i=1

1

q(yi)
.

For example, Chen et al. (2005) construct a probability mass function for

counting two-way tables with fixed margins of the form

q(y) = q1(y1)q2(y2|y1) · · · qd(yd|y−d).

Since the approximation is the mean of an i.i.d. sample, standard errors for

|̂Γ|, and hence confidence intervals for |Γ|, can also be constructed. Chen

et al. (2005) also develop an importance sampling method for counting two-

way zero-one tables with fixed margins.

8. Discussion

We have proposed a new way of approximating the number of contingency

tables, and tables of zeros and ones, that satisfy certain linear constraints.

The approximations involve fitting generalized linear models which can be

accomplished almost instantaneously. The approximations are much more

accurate than analytical approximations that have been proposed previously,

and can be applied in a wider range of problems. In addition, they can be

applied in problems for which exact algebraic methods are not yet compu-

tationally feasible. An alternative approach is to use Monte Carlo methods

such as those developed recently by Chen et al. (2005) for two-way tables

with fixed margins. It is not clear to what extent this approach can be mod-

ified to deal with additional constraints such as those imposed by sufficiency

in association models. In any case, the approximations developed in this
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paper provide a computational feasible method for counting tables in a wide

variety of settings.
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APPENDIX

We show how to calculate the correction term O in a computationally efficient

way by using sparse structure of matrix X. From equations (5), (6), and (7)

it is clear that the complexity of calculating O is dominated by the number

of operations required to get κ̂2
13 and κ̂2

23 which is O(p6). Note that, for the

Finch data example, p = 1 + (I − 1) + (J − 1) = 28. Therefore, it would

need 4× 109 operations to calculate κ̂2
13 and κ̂2

23. Calculating κ̂4 is much less

costly, involving O(p4) operations.

However, due to the sparsity of matrix X, most of the terms in all three

sums of (6), and (7) turn out to be zeros and may be ignored, substantially

decreasing the complexity. We now describe an efficient algorithm for finding

the non-zero terms.

Let

T 3 = {(t1, t2, t3) ∈ P
3 : K̂t1t2t3 6= 0}

and

T 4 = {(t1, t2, t3, t4) ∈ P
4 : K̂t1t2t3t4 6= 0}

where P = {1, 2, . . . , p}. Then clearly

κ̂2
13 =

∑

(t1,t2,t3)∈T 3

∑

(t4,t5,t6)∈T 3

K̂t1t2t3K̂t4t5t6K̂
t1t2K̂t3t4K̂t5t6 . (13)

κ̂2
23 =

∑

(t1,t2,t3)∈T 3

∑

(t4,t5,t6)∈T 3

K̂t1t2t3K̂t4t5t6K̂
t1t4K̂t2t5K̂t3t6 . (14)

κ̂4 =
∑

(t1,t2,t3,t4)∈T 4

K̂t1t2t3t4K̂
t1t2K̂t3t4 . (15)

The third and the fourth derivatives of the log-likelihood function are given

by

l(3)(θ̂) = −
I∑

i=1

J∑

j=1

K∑

k=1

b(3)(xT
ijkθ̂)

[
xijk ⊗ xijkx

T
ijk

]
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and

l(4)(θ̂) = −
I∑

i=1

J∑

j=1

K∑

k=1

b(4)(xT
ijkθ̂)

[
xijkx

T
ijk ⊗ xijkx

T
ijk

]
.

Notice that the only difference between the geometric and binomial models

is function b(·). This difference is immaterial to the arguments that follow.

Now note that

K̂t1t2t3 = l(3)(θ̂)t1t2t3 = −
I∑

i=1

J∑

j=1

K∑

k=1

b(3)(xT
ijkθ̂)xt1

ijkx
t2
ijkx

t3
ijk

and

K̂t1t2t3t4 = l(4)(θ̂)t1t2t3t4 = −
I∑

i=1

J∑

j=1

K∑

k=1

b(4)(xT
ijkθ̂)xt1

ijkx
t2
ijkx

t3
ijkx

t4
ijk

are symmetric with respect to permutation of the subindices (t1, t2, t3) and

(t1, t2, t3, t4). Hence, the sets of indexes T 3 and T 4 may be represented as

T 3 =
⊔

t∈T 3
≤

Or3(t) (16)

and

T 4 =
⊔

t∈T 4
≤

Or4(t) ,

where

T 3
≤ = {(t1, t2, t3) ∈ T 3 : t1 ≤ t2 ≤ t3}

and

T 4
≤ = {(t1, t2, t3, t4) ∈ T 4 : t1 ≤ t2 ≤ t3 ≤ t4} ,

and where Or3(t) denotes all the triples in T 3 that can be obtained by

permuting t from T 3
≤. Similarly, Or4(t) contains all four-tuples which are

permutations of t from T 4
≤. For instance, if t = (2, 4, 4, 9) belongs to T 4

≤,

then Or4(t), in addition to the original four-tuple (2, 4, 4, 9), includes also
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its permutations (2, 9, 4, 4), (9, 2, 4, 4), (9, 4, 4, 2), (4, 4, 2, 9), and (4, 4, 9, 2).

Therefore, it suffices to determine the sets T 3
≤ and T 4

≤ to calculate the sums

in (13) - (15).

We illustrate the algorithm using the independence model in a three-way

table. For each count, yijk, the corresponding vector, xijk ∈ {0, 1}p, with

p = 1 + (I − 1) + (J − 1) + (K − 1), has at most four non-zero coordinates.

So it is convenient to view xijk as the union of four subcomponents,

xijk =
(

Z1 Z2 Z3 Z4

)
,

with Z1 of size 1, Z2 of size I − 1, Z3 of size J − 1, and Z4 of size K − 1. Let

eL−1
l =

{
el ∈ RL−1, l = 1, . . . , L − 1
0 ∈ RL−1, l = L

where el is a component of the standard basis for RL−1. Then we can write

the vector, xijk, as

(1, eI−1
i , eJ−1

j , eK−1
k ). (17)

To compute (13) - (14) we need to find all triples, (t1 ≤ t2 ≤ t3), for which

there exists at least one combination (i, j, k) with xt1
ijkx

t2
ijkx

t3
ijk 6= 0. The set of

such triples obviously includes T 3
≤, and is exactly equal to T 3

≤ in all examples

considered in this paper. Table 6 contains all possible combinations for triples

t1 Z1 Z1 Z1 Z1 Z1 Z1 Z1 Z1 Z1 Z1

t2 Z1 Z1 Z1 Z1 Z2 Z2 Z2 Z3 Z3 Z4

t3 Z1 Z2 Z3 Z4 Z2 Z3 Z4 Z3 Z4 Z4

t1 Z2 Z2 Z2 Z2 Z2 Z2 Z3 Z3 Z3 Z4

t2 Z2 Z2 Z2 Z3 Z3 Z4 Z3 Z3 Z4 Z4

t3 Z2 Z3 Z4 Z3 Z4 Z4 Z3 Z4 Z4 Z4

Table 6: All combinations for indexes t1 ≤ t2 ≤ t3.
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t1 ≤ t2 ≤ t3. For each (Zl1 , Zl2 , Zl3) in Table 6 all the relevant triples can be

calculated by using ”inversion” functions hZl
: I × J × K → Zl where

hZl
(i, j, k) =






1, l = 1
1 + i, l = 2 and i ≤ I − 1
∅, l = 2 and i = I
1 + (I − 1) + j, l = 3 and j ≤ J − 1
∅, l = 3 and j = J
1 + (I − 1) + (J − 1) + k, l = 4 and k ≤ K − 1
∅, l = 4 and k = K

It follows from (17) that for any given (i, j, k) the corresponding value xt1
ijkx

t2
ijkx

t3
ijk

is non-zero if and only if t1 = hZl1
(i, j, k), t2 = hZl2

(i, j, k), and t3 =

hZl3
(i, j, k). Hence, if we define

gi(Zl1 , Zl2 , Zl3) =

{
1, l1 = 2 or l2 = 2 or l3 = 2
I − 1, otherwise

,

and the similar functions for the indices, j and k, then the number of all

relevant triples from (Zl1 , Zl2 , Zl3) is given by

gi(Zl1 , Zl2 , Zl3)gj(Zl1 , Zl2 , Zl3)gk(Zl1 , Zl2 , Zl3).

The cardinality of T 3
≤ is obtained by summing up these values for all zone

combinations (Zl1 , Zl2 , Zl3) from Table 6. Using (16) one gets the cardinality

of T 3. For the Finch data, this cardinality equals 2441. Hence, the complexity

of calculating κ̂2
13 and κ̂2

23 is reduced to 29,792,405 operations. A similar

argument may be applied to T 4
≤, and all the other models we consider in this

paper.
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