HOMEWORK 7

STA 624.01, Applied Stochastic Processes Spring Semester, 2008

Due: Monday, March 17th, 2008

Readings: Section 3.1 and 3.2 of text

Regular Problems

1 (Lawler 2.8) Given a braching process with the following offspring distributions, determine the extinction probability a:

(a)

$$p_0 = 0.25, p_1 = 0.4, p_2 = 0.35.$$

(b)

$$p_0 = 0.5, p_1 = 0.1, p_3 = 0.4.$$

(c)

$$p_0 = 0.91, p_1 = 0.05, p_2 = 0.01, p_3 = 0.01, p_6 = 0.01, p_1 = 0.01.$$

2 (Lawler 2.9) Consider the branching process with

$$p_0 = 0.5, p_1 = 0.1, p_3 = 0.4.$$

Suppose $X_0 = 1$.

- (a) what is the probability that the population is extinct in the second generation $(X_2 = 0)$, given that it did not extinct in the first generation $(X_1 > 0)$?
- (b) what is the probability that the population is extinct in the third generation $(X_3 = 0)$, given that it did not extinct in the second generation $(X_2 > 0)$?
- **3** (Lawler 2.12) Consider the branching process with

$$p_0 = 1/3, p_1 = 1/3, p_2 = 1/3.$$

With the aid of computer, find the probability that the population dies out after n steps where n = 20, 100, 200, 1000, 1500, 2000, 5000. Do the same with the values

$$p_0 = 0.35, p_1 = 0.33, p_2 = 0.32.$$

Then do the same with with the values

$$p_0 = 0.32, p_1 = 0.33, p_2 = 0.35.$$

4 Suppose X_n is a branching process with $E(\xi) = \mu < 1$. Let $Z = \sum_{n=0}^{\infty} X_n$. Suppose $X_0 = 1$. Show that

$$E[Z] = 1/(1 - \mu).$$

Computer Problems

Branching process Consider the branching processes with

(a)
$$p_0 = 1/3$$
, $p_1 = 1/3$, $p_2 = 1/3$,

(b)
$$p_0 = 0.35$$
, $p_1 = 0.33$, $p_2 = 0.32$,

(c)
$$p_0 = 0.32$$
, $p_1 = 0.33$, $p_2 = 0.35$.

In this computer assingment, please do simulations to find the expected values of the size of the population at n steps where n = 20, 100, 200, 1000, 1500, 2000, 5000.