A review of Chapter 1, 2 and some of Chapter 3 STA 524, Fall 2008

Ruriko Yoshida Dept. of Statistics University of Kentucky

www.ms.uky.edu/ \sim ruriko

Basic on Set Theory

Let $A, B \subset S$. Then,

$$A \cup B = \{x | x \in A \text{ or } x \in B\}.$$

$$A \cap B = \{x | x \in A \text{ and } x \in B\}.$$

$$A - B = \{x | x \in A \text{ and } x \not\in B\}.$$

$$A \subset B \text{ means } x \in A \Rightarrow x \in B.$$

$$A = B \text{ if and only if } A \subset B \text{ and } B \subset A.$$

Ruriko Yoshida

Let $A \subset S$. Then,

$$(A^c)^c = A.$$

$$\emptyset^c = S.$$

$$S^c = \emptyset.$$

$$A \cup A^c = S.$$

$$A \cap A^c = \emptyset.$$

Ruriko Yoshida

Let $A, B, C \subset S$. Then,

$$A \cup B = B \cup A.$$

$$A \cup (B \cup C) = (A \cup B) \cup C.$$

$$A \cap B = B \cap A.$$

$$A \cap (B \cap C) = (A \cap B) \cap C.$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

$$(A \cap B) = A^c \cup B^c$$

$$(A \cup B) = A^c \cap B^c$$

Definition of Probability

Definition Suppose $A_1, A_2, \dots \subset S$ are infinite sequence of events. Then we say A_1, A_2, \dots are disjoint iff

$$A_i A_j = \emptyset, \ \forall i, j \ \text{with} \ i \neq j.$$

Definition A probability P is a function from the set of all possible events in S to $\mathbb R$ such that

$$P(A) \ge 0 \ \forall A \subset S,$$

if
$$A_1, A_2, \dots \subset S$$
 are disjoint, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$,

$$P(S) = 1.$$

STA 524 5

Ruriko Yoshida

Some Theorems

Thm

$$P(\emptyset) = 0.$$

Thm Suppose $A_1, A_2, \cdots A_n \subset S$ are finite sequence of disjoint events. Then,

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i).$$

Thm $\forall A \subset S$,

$$P(A^c) = 1 - P(A) \text{ and } 0 \le P(A) \le 1.$$

Thm $\forall A, B \subset S$ such that $A \subset B$,

$$P(A) \le P(B)$$
.

Combinatorial Methods

Definition A permutation of order n, S_n , is an arrangement or ordering of n objects.

Definition An r permutation of order n, S_n^r , is an arrangement using r out of n objects.

Definition An r combination of n distinct objects is an unordered selection or subset of r out of n objects.

We write

$$P_{n,r} = \# \text{ of } S_n^r = \frac{n!}{(n-r)!},$$

 $C_{n,r} = \#$ of r combinations of n distinct objects $= \frac{n!}{r!(n-r)!} = \binom{n}{r}$.

STA 524 7

Binomial Coefficients

Definition $C_{n,r}$ are called binomial coefficients.

Thm (Binomial Theorem) $C_{n,i}$ are coefficients of x^i in the polynomial $(1+x)^n$. In other words,

$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^n.$$

Note $C_{n,0} = C_{n,n} = 1$.

Binomial Identities

$$\binom{n}{k} \binom{k}{m} = \binom{n}{m} \binom{n-m}{k-m},$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1},$$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n},$$

$$\sum_{i=0}^{r} \binom{n+i}{i} = \binom{n+r+1}{r},$$

$$\sum_{i=0}^{n} \binom{n}{i}^{2} = \binom{2n}{n},$$

Binomial Identities cont....

$$\sum_{k=0}^{r} {m \choose k} {n \choose r-k} = {m+n \choose r},$$

$$\sum_{k=0}^{r} {m \choose k} {n \choose r+k} = {m+n \choose m+r},$$

$$\sum_{k=s-n}^{m-r} {m-k \choose r} {n+k \choose s} = {m+n+1 \choose r+s+1}.$$

Multinomial Coefficients

Definition A multinomial coefficient is defined by $\frac{n!}{n_1!n_2!\cdots n_k!}$ where $n_1+n_2+\cdots+n_k=n$ and $n_i\geq 0$ integer for all $i=1,2,\cdots k$. It is denoted by

$$\binom{n}{n_1, n_2, \cdots, n_k}$$
.

Thm (Multinomial Theorem)

For all numbers x_1, x_2, \dots, x_k and each positive integer n, we have

$$(x_1 + x_2 + \dots + x_k)^n = \sum \binom{n}{n_1, n_2, \dots, n_k} x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$$

where the summand extends over all possible combinations of nonnegative integers n_1, n_2, \dots, n_k such that $n_1 + n_2 + \dots + n_k = n$.

Probability of a union of events

Thm Suppose $A_1, A_2, \cdots, A_n \subset S$ are finite sequence of events. Then

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k)$$

$$-\sum_{i < j < k < l} P(A_i A_j A_k A_l) + \cdots (-1)^{n+1} P(A_1 A_2 \cdots A_n).$$

Conditional Probability

Definition Suppose $A, B \subset S$. The conditional probability of A given B, P(A|B), is a proability that A occurs after B occurs.

Note If $A, B \subset S$ such that P(B) > 0, then

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

Note (Multiplication Rule)

$$P(AB) = P(B)P(A|B).$$

Conditional Probability

Thm Suppose $A_1,A_2,\cdots A_n\subset \Omega$ such that $Pr(A_1A_2\cdots A_i)>0, \forall i=1,2,\cdots,n-1.$ Then

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) \cdots P(A_n | A_1 A_2 \cdots A_{n-1}).$$

Thm Suppose $A_1,A_2,\cdots A_n,B\subset\Omega$ such that Pr(B)>0, $Pr(A_1A_2\cdots A_i|B)>0, \forall i=1,2,\cdots,n-1$. Then

$$P(A_1 A_2 \cdots A_n | B) = P(A_1 | B) Pr(A_2 | A_1 B) \cdots P(A_n | A_1 A_2 \cdots A_{n-1} B).$$

Independent Events

Definition $A, B \subset S$ are independent iff P(A)P(B) = P(AB).

Thm If $A, B \subset S$ are independent, then A, B^c are independent.

Definition $A_1, A_2, \cdots A_n \subset S$ are independent iff for every subsets $A_{i_1}, A_{i_2}, \cdots, A_{i_j}$ of j of these events,

$$P(A_{i_1}A_{i_2}\cdots A_{i_j}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_j}).$$

Definition $A_1, A_2, \cdots A_n \subset S$ are pairwise independent iff for every i, j with $i \neq j$

$$P(A_i A_j) = P(A_i) P(A_j).$$

Independent Events and Conditional Prob

Note $A, B \subset S$ are independent iff P(A|B) = P(A).

Definition Let $A_1, A_2, \dots, A_n, B \subset S$. We say Let $A_1, A_2, \dots A_n$ are conditionally independent given B iff for every subset $A_{i_1}, A_{i_2}, \dots, A_{i_j}$ of j of these events,

$$P(A_{i_1}A_{i_2}\cdots A_{i_j}|B) = P(A_{i_1}|B)P(A_{i_2}|B)\cdots P(A_{i_j}|B).$$

Thm Suppose that $A_1, A_2, B \subset S$ such that $P(A_1B) > 0$. Then A_1, A_2 are conditionally independent given B iff $P(A_2|A_1B) = P(A_2|B)$.

Law of Total Probability

Definition A collection $\{B_i\}_{i=1}^{\infty}$ of disjoint events for which $\bigcup_{i=1}^{\infty} B_i = S$ is called a partition of the sample space S.

Thm (Law of Total Probability)

For any partition of S, $\{B_i\}_{i=1}^{\infty}$, for any event $A \subset S$, we have

$$P(A) = \sum_{i=1}^{\infty} P(AB_i) = \sum_{i=1}^{\infty} P(A|B_i)P(B_i).$$

Law of Total Probability

Thm (Conditional version of Law of Total Probability)

For any partition of S, $\{B_i\}_{i=1}^{\infty}$, for any event $A, C \subset S$, we have

$$P(A|C) = \sum_{i=1}^{\infty} P(AB_i|C) = \sum_{i=1}^{\infty} P(A|B_iC)P(B_i|C).$$

Bayes' Theorem

Thm (Bayes' Theorem)

Suppose $\{B_i\}_{i=1}^{\infty}$ is a partition of S and $A \subset S$ for which P(A) > 0. Then, for any event B_i with $P(B_i) > 0$, we have:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_j P(B_j)P(A|B_j)}.$$

Definition $P(B_i)$ in the equation above is called a prior probability and $P(B_i|A)$ in the equation above is called a posterior probability.

Random variables

Definition A random variable (r.v.) X is a function from S to \mathbb{R} . A discrete random variable X is a function from S to \mathbb{Z} .

Definition A probability function (p.f.) f(x) of a discrete r.v. X is a function defined over $\mathbb R$ such that

$$f(x) = P(X = x)$$
 where $x \in \mathbb{Z}$.

Note Since P(S) = 1, we have

$$\sum_{x=-\infty}^{\infty} f(x) = 1.$$

STA 524 20

Continuous random variables

Definition We say X a **continuous random variable** if there is a continuous nonnegative function f defined on $\mathbb R$ such that

$$Pr(X \in A) = \int_A f(x)dx, \, \forall A \subset \mathbb{R}.$$

This function f is called the **probability density function** of X.

Note For every p.d.f f of X must satisfy:

- 1. $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- $2. \int_{-\infty}^{\infty} f(x)dx = 1.$

STA 524 21