HOMEWORK 7

STA5724.01, Probability Fall Semester, 2007

Due: Friday, October 19th, 2007

- **1** Suppose n random variables X_1, \dots, X_n form a random sample from a discrete dustribution for which the p.f. is f. Determine the value of $Pr(X_1 = X_2 = \dots = X_n)$.
- **2** Let X be a r.v. with a continuous distribution. Let $X_1 = X_2 = X$.
 - (a) Prove that both X_1 and X_2 have a continuous distribution.
 - (b) Prove that $\mathbf{X} = (X_1, X_2)$ does not have a continuous distribution.
- **3** Suppose $\mathbf{X}_1, \dots, \mathbf{X}_n$ are independent. Let k < n and let i_1, \dots, i_k be distinct integers between 1 and n. Prove that $\mathbf{X}_{i_1}, \dots, \mathbf{X}_{i_k}$ are independent.
- 4 Let **X** be a random vector that is split into three parts $\mathbf{X} = (\mathbf{Y}, \mathbf{Z}, \mathbf{W})$. Suppose **X** has a continuous joint distribution with p.d.f. $f(\mathbf{y}, \mathbf{z}, \mathbf{w})$. Let $g_1(\mathbf{y}, \mathbf{z}|\mathbf{w})$ be the conditional p.d.f. of (\mathbf{Y}, \mathbf{Z}) given $\mathbf{W} = \mathbf{w}$ and let $g_2(\mathbf{y}|\mathbf{w})$ be the conditional p.d.f. of **Y** given $\mathbf{W} = \mathbf{w}$ Prove

$$g_2(\mathbf{y}|\mathbf{w}) = \int g_1(\mathbf{y}, \mathbf{z}|\mathbf{w}) dz.$$

5 Suppose n random variables X_1, \dots, X_n form a random sample from a continuous dustribution for which the p.d.f. is f. Determine the probability that at least k of these n r.v. will lie in a specified interval $a \le x \le b$.