STA 570Spring 2011Lecture 20Tuesday, April 5

- 6.2 Small Sample Inference for Means
- 7.3 Comparing Means of Two Independent Samples
- 7.4 Comparing Means of Two Dependent Samples

Correspondence Between Tests and Confidence Intervals

- Results of confidence intervals and of two-sided significance tests are consistent:
 - Whenever the hypothesized mean μ_0 is not in the confidence interval around \overline{Y} , then the *p*-value for testing $H_0: \mu = \mu_0$ is smaller than 5% (significance at the 5%-level)
 - In general, a (1-alpha)-confidence interval corresponds to a test at significance level alpha
 - This is true for means as well as proportions

Multiple Choice Question I

- A 95% confidence interval for mu is (96,110). Which of the following statements about significance tests for the same data are correct?
 - a) In testing the null hypothesis mu=100 (two-sided), P>0.05
 - b) In testing the null hypothesis mu=100 (two-sided), P<0.05</p>
 - c) In testing the null hypothesis mu=x (two-sided), P>0.05 if x is any of the numbers inside the confidence interval
 - d) In testing the null hypothesis mu=x (two-sided), P<0.05 if x is any of the numbers outside the confidence interval

Multiple Choice Question II

- The P-value for testing the null hypothesis mu=100 (two-sided) is P=.001. This indicates
 - a) There is strong evidence that mu = 100
 - b) There is strong evidence that mu does not equal 100
 - c) There is strong evidence that mu > 100
 - d) There is strong evidence that mu < 100
 - e) If mu were equal to 100, it would be unusual to obtain data such as those observed

Multiple Choice Question II

- The P-value for testing the null hypothesis mu=100 (two-sided) is P=.001. Suppose that in addition you know that the z score of the test statistic was z=3.29. Then
 - a) There is strong evidence that mu = 100
 - b) There is strong evidence that mu > 100
 - c) There is strong evidence that mu < 100

Small Sample Confidence Interval for a Mean

- What if we want to make inference about the population mean, but our sample size is not big enough to meet the minimal sample size requirement n>25 to apply the central limit theorem?
- Confidence intervals are constructed in the same way as before, but now we are using *t*-values instead of *z*-values
- For a random sample *from a normal distribution*, a 95% confidence interval for mu is

$$\overline{Y} \pm t_{0.025} \frac{S}{\sqrt{n}}$$

- where t_{0.025} is a t-score (instead of z-score) from a site like http://stattrek.com/Tables/T.aspx
- degrees of freedom are df=n-1

Small Sample Hypothesis Test for a Mean

- Assumptions
 - Quantitative variable, random sampling, population distribution is normal, any sample size
- Hypotheses
 - Same as in the large sample test for the mean

 $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$ or $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu > \mu_0$ or $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu < \mu_0$

Small Sample Hypothesis Test for a Mean

- Test statistic
 - Exactly the same as for the large sample test

$$t_{obs} = \frac{\overline{Y} - \mu_0}{s / \sqrt{n}}$$

- *p*-Value
 - Same as for the large sample test (one-or two-sided), but using an online tool for the *t* distribution
- Conclusion
 - Report p-value and make formal decision

Normality Assumption

- An assumption for the *t*-test is that the population distribution is normal
- In practice, it is impossible to be 100% sure if the population distribution is normal
- It is useful to look at histogram or stemand-leaf plot (or normal probability plot) to check whether the normality assumption is reasonable

Normality Assumption

- Good news: The *t*-test is relatively *robust* against violations of the assumption that the population distribution is normal
- Unless the population distribution is highly skewed, the *p*-values und confidence intervals are fairly accurate
- However: The random sampling assumption must never be violated, otherwise the test results are completely invalid

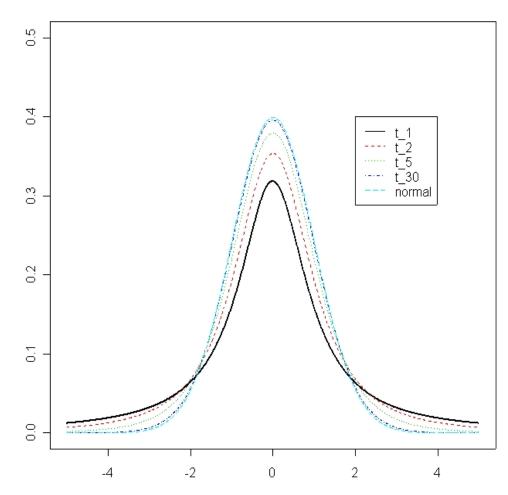
Summary: Small Sample... Significance Test for a Mean (Assumption: Population distribution is normal)

	One-Sid	Two-Sided Test	
Null Hypothesis	Ŀ		
Research Hypothesis	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
Test Statistic	$t_{obs} = \frac{\overline{Y} - \mu_0}{s / \sqrt{n}}$, degrees of free	edom = n - 1
<i>p</i> -value	$P(T_{n-1} < t_{obs})$	$P(T_{n-1} > t_{obs})$	$2 \cdot P(T_{n-1} > t_{obs})$

11

t-Distributions

- The t-distributions are bell-shaped and symmetric around 0
- The smaller the degrees of freedom, the more spread out is the distribution
- *t*-distributions look almost like a normal distribution
- In fact, the limit of the t-distributions is a normal distribution when n gets larger



12

STA 570 - Spring 2011 - Lecture

Small Sample Inference for a Mean: Example

- Several food products are fortified by adding nutrients, especially vitamins. A study of production quality takes a random sample from a production run and determines the actual amount of vitamin C.
- The vitamin C content is supposed to be 40mg/100g, but it is suspected that it is actually lower. We would like to test whether vitamin C content conforms to the specifications, or whether it is lower.
- A random sample of size 8 has sample mean 22.5 and sample standard deviation 7.19.
- Can we conclude that the vitamin C content for this run is too low?

Statistical Methods for One Sample Summary I

- Testing the Mean
 - Large sample size (30 or more):
 - Use the large sample test for the mean

(z-Scores, normal distribution)

– Small sample size:

Check whether the data is not very skewed Use the *t* test for the mean (*t*-Scores, *t* distribution)

Statistical Methods for One Sample Summary II

- Testing the Proportion
 - Large sample size (np>5, n(1-p)>5):
 - Use the large sample test for the proportion

(z-Scores, normal distribution)

– Small sample size:

Binomial distribution

(not covered in class)

Statistical Methods for Two Samples Independent vs. Dependent Samples

- Two Independent Samples
 - Different subjects in the different samples
 - The two samples constitute independent samples from two subpopulations

Two Dependent Samples

- Natural matching between an observation in one sample and an observation in the other sample
- For example, two measurements on the same subject
- Data sets with dependent samples require different statistical methods than data sets with independent samples

Independent Samples Confidence Interval for Difference of Two Means

• The large sample (both samples sizes at least 20) confidence interval for $\mu_2 - \mu_1$ is

$$(\overline{Y}_{2} - \overline{Y}_{1}) \pm z \cdot \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}^{2}}}$$

Significance Test for the Difference of Two Means

- For large samples (both sample sizes at least 20),
- the significance test for the null hypothesis that both population means are equal,

 H_0 : $\mu_1 = \mu_2$ which is equivalent to H_0 : $\mu_2 - \mu_1 = 0$, is

 $z_{obs} = \frac{\text{parameter estimate} - \text{parameter under null hypothesis}}{\text{standard error of estimator}}$

$$=\frac{\overline{Y}_{2}-\overline{Y}_{1}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}$$

Significance Test for the Difference of Two Means

- Most commonly, the alternative hypothesis is twosided
- Then, the P-value is the two-tail probability of "anything at least as extreme as observed"
- The probability is taken from the z-score online tool (normal distribution)

Significance Test for the Difference of Two Means: Example (contd.)

- Do Americans consume more caramel apples in the Fall than five years ago?
- 2002 survey: 350 subjects had sample mean 2.3 caramel apples, sample standard deviation 1.2 caramel apples
- 2007 survey: 485 subjects, sample mean 2.8 caramel apples, sample standard deviation 1.4 caramel apples
- Set up the hypotheses of a significance test to analyze whether the population means differ in 2002 and 2007
- Construct the test statistic
- Report and interpret the P-value
- Is the result consistent with the confidence interval?

Correspondence Between Confidence Intervals and Tests

- As before, confidence intervals and tests are equivalent in the sense that
 - If the two-sided test has a P-value less than 0.01 (significant at level alpha=0.01),
 - then the 99% confidence interval does not contain the null hypothesis value
 - The same is true for alpha=0.05 and 95% confidence intervals,
 - or any alpha-level test and the corresponding 1-alpha confidence interval

Correspondence Between Confidence Intervals and Tests

- As before, confidence intervals are preferred over tests because they provide a range of plausible values
- In the two-sample case, it is a range of plausible values for the difference between the population means

Small Sample Inference

- How to make inference about the difference between two population means when the sample sizes are small?
- $n_1 < 20 \text{ or } n_2 < 20$
- There is a method that works for every sample size (if $n_1 > 1$ and $n_2 > 1$): two sample t test for independent data / unpaired samples
- Assumption: Both samples come from normal population distributions
- P-value calculation requires the t distribution
- Formulas too complicated to be practical "by hand" •
- http://www.fon.hum.uva.nl/Service/Statistics/2Sample Student t Test.html
- http://graphpad.com/quickcalcs/ttest1.cfm

What if all the assumptions fail?

- If the samples are small and
- the assumption of *normal population is not justifiable*,
- one should use the Wilcoxon-Mann-Whitney test for independent samples
- <u>http://www.fon.hum.uva.nl/Service/Statistics/Wilcoxon_Test.html</u>
- However:
 - The random sampling assumption must never be violated
 - The two samples must be independent for this test

Summary

Selecting the Correct Method for Comparing Means in of Two Populations

- Independent Samples
 - Large Samples
 - Small Samples
 - Normal populations

(sample histograms appear symmetric)

- Not normal populations
- Dependent Samples (Matched Pairs)
 - Large Samples
 - Small Samples

- Comparing Dependent Means
 - Example: Special exam preparation training for STA 570 students
 - Choose 10 students and compare before vs. after special training.
 - Better design: Choose n=10 pairs of students such that the students matched in any given pair are very similar with regard to previous exam/quiz results

For each pair, one student is randomly selected for the special training (group 1)

The other student receives normal instruction (group 2)

- Example, contd.
 - Consider the first (simple) design
 - For the *i*th student, define

D_i = Score after special training – Score before

• The sample mean of the difference scores,

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i = (D_1 + D_2 + \dots + D_n)/n$$

- is an estimator for the difference between the population means
- We can now use exactly the same methods as for one sample
- Just replace the Y_i by D_i
- When the data set is small, we need the assumption that the population distribution of the score differences is normal

• The small sample confidence interval is

$$\bar{D} \pm t_{n-1} \frac{S_D}{\sqrt{n}} = \bar{D} \pm t_{n-1} \frac{\sqrt{\sum_{i=1}^n (D_i - \bar{D})^2}}{\sqrt{n}}$$

 When n exceeds 30, we may use the z-scores instead of the t-scores

• The small sample test statistic for testing difference in the population means is

$$t_{obs} = \frac{\bar{D}}{s_D / \sqrt{n}}$$

- For small n, use the t-distribution with df=n-1
- When n exceeds 30, we may use the z-scores (normal distribution) instead of the t-distribution

Comparing Dependent Samples: Example

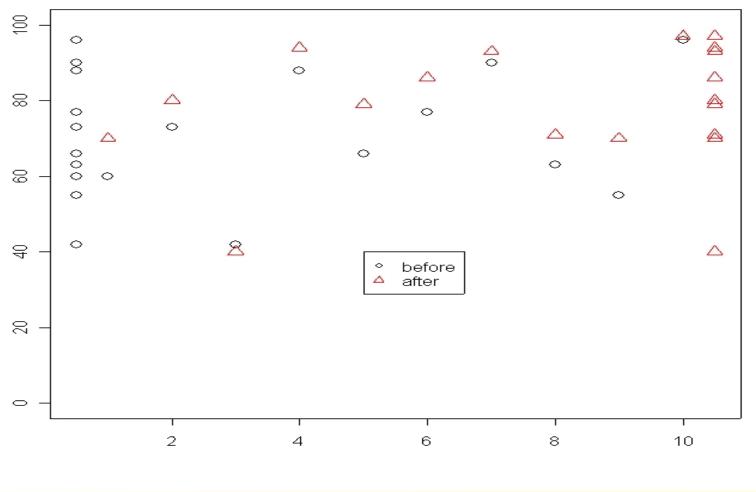
- Ten STA 570 students take a statistics test both before and after undergoing intensive training using the online study tools
- Then, the scores for each student are paired, as in the following table

Student	1	2	3	4	5	6	7	8	9	10
Before	60	73	42	88	66	77	90	63	55	96
After	70	80	40	94	79	86	93	71	70	97

STA 570 - Spring 2011 - Lecture

31

Comparing Dependent Samples: Example



STA 570 - Spring 2011 - Lecture

32

Comparing Dependent Samples: Example (contd.)

Student	1	2	3	4	5	6	7	8	9	10
Before	60	73	42	88	66	77	90	63	55	96
After	70	80	40	94	79	86	93	71	70	97

- a) Find a point estimator for the difference of population means.
- b) Calculate and interpret the P-value for testing whether the mean change equals 0
- c) Compare the mean scores after and before the training course by constructing and interpreting a 90% confidence interval for the population mean difference

Comparing Dependent Samples: Example (contd.)

Output from Statistical Software Package SAS

N	10
Mean	7
Std Deviation	5.24933858

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

 Student's t
 t
 4.216901
 Pr > |t|
 0.0022

 Sign
 M
 4
 Pr >= |M|
 0.0215

 Signed Rank
 S
 25.5
 Pr >= |S|
 0.0059

STA 570 - Spring 2011 - Lecture 20

Comparing Dependent Samples: Example (contd.) Using the Wrong Method (for independent samples)

Output from SAS

The TTEST Procedure

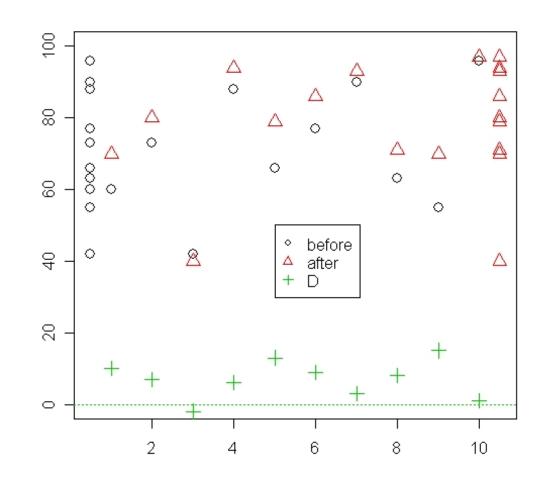
Variable	e Sam	ple	Ν	Mean	Std	Dev	Std Err	
score	1		71	17.0		5.39 ⁻	-	
score	2	10	78	16.7	73	5.304	41	
score	Diff (1-2)	-7	16.9	921	7.56	75	
			T-Te	ests				
Variable	e Me	thod	١	/ariance	es	DF	t Value	Pr > t

score	Pooled	Equal	18	-0.	.93	0.3672
score	Satterthwaite	Unequal		18	-0.93	0.3672

Comparing Dependent Samples: Reducing variability

- Variability in the difference scores may be less than the variability in the original scores
- This happens when the scores in the two samples are strongly associated
- Subjects who score high before the intensive training also tend to score high after the intensive training

Comparing Dependent Samples: Example



STA 570 - Spring 2011 - Lecture 20

Comparing Proportions in Two (Large) Independent Samples

- Response variable: Qualitative
- Inference about the population proportions that are classified in a particular category of the response variable
- Explanatory variable: The variable that defines the group membership.
- Are the proportions different for the two groups?

$$p_2 - p_1 = 0?$$

- Confidence interval for the difference
- Significance test about whether the difference equals zero

Comparing Two Proportions: Examples

Gender Gap in Party Identification
 Explanatory variable: Male/Female
 Response variable: Party Identification
 Is the proportion of Republicans different between male and female voters?

 Explanatory variable: Treatment (Drug / Placebo)
 Response variable: Pain (Yes/No)
 Is the proportion who suffers from pain different for the two treatment groups?

Confidence Interval for the Difference of Two Proportions

- Here, large sample means at least five observations in each category of interest in each of the samples
- The large sample confidence interval for P₂ P₁ is

$$(\hat{p}_2 - \hat{p}_1) \pm z \cdot \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Confidence Interval for the Difference of Two Proportions: Example

- Famous five-year study on the effect of Aspirin to reduce heart disease
- Study subjects: 22,071 male physicians
- Every other day, participants took either an aspirin tablet or a placebo
- 11,034 who took placebo: 189 had a heart attack
- 11,037 who took aspirin: 104 had heart attacks
- Estimate the heart attack rates for the two groups.
- Construct a 95% confidence interval to compare them.
- Interpret.

$$(\hat{p}_2 - \hat{p}_1) \pm z \cdot \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1}} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2} =$$

STA 570 - Spring 2011 - Lecture 20

Significance Test for the Difference of Two Proportions

 The large sample (see above) significance test for the null hypothesis that both population proportions are equal,

 $H_0: p_1 = p_2$ which is equivalent to $H_0: p_2 - p_1 = 0$, is

$$Z_{obs} = \frac{\text{estimate } - \text{null hypothesis value}}{\text{standard error of estimator}}$$
$$= \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\hat{p} \cdot (1 - \hat{p}) \cdot \left(\frac{1}{n} + \frac{1}{n}\right)}}$$

 \hat{p} is the "pooled" proportion of the total sample (both samples together) in the category of interest STA 570 - Spring 2011 - Lecture

 $(n_1 n_2)$

Significance Test for the Difference of Two Proportions

- As above, most commonly, the alternative hypothesis is two-sided
- Then, the P-value is the two-tail probability of "anything at least as extreme as observed"
- The probability is taken from a z-score applet (normal distribution)

Significance Test for the Difference of Two Proportions: Example

- Effect of Aspirin to reduce heart disease
- Study subjects: 22,071 male physicians
- Every other day, participants took either an aspirin tablet or a placebo
- 11,034 who took placebo: 189 had a heart attack
- 11,037 who took aspirin: 104 had heart attacks
- Test whether the rates are significantly different. Report the P-value and interpret.

$$z = \frac{\widehat{p}_2 - \widehat{p}_1}{\sqrt{\widehat{p} \cdot (1 - \widehat{p}) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} =$$

Confidence Interval and Hypothesis Test for the Difference of Two Proportions: Example

- A serious side effect of many allergy medicines is that they cause drowsiness, which makes them dangerous for industrial workers. In recent years, different nondrowsy allergy medicines have been developed. One of them was Hismanal. The manufacturer claimed that this was the first once-a-day nondrowsy allergy medicine.
- The nondrowsiness claim is based on a clinical experiment in which 1,604 patients were given Hismanal, and 1,109 patients were given a placebo.
- Of the first group, 7.1% reported drowsiness; of the second group, 6.4% reported drowsiness.
- Do these results allow us to infer at the 5% significance level that Hismanal's claim is false?
- Report a 95% confidence interval for the difference of the proportions.

Contingency Table

- The proportions are usually listed in a table called contingency table
- How are the outcomes of the response variable contingent on the category of the explanatory variable
- Each row represents a category of one variable, and each column represents a category of the other variable
- The cells of the table contain frequency counts for the four possible combinations of outcomes

	Drowsy	Not Drowsy	
Hismanal			
Placebo			

Summary

Large Sample Significance Test for the Difference of Two Proportions

	One-Sid	Two-Sided Test					
Null Hypothesis	$H_0: p_1 = p_2$						
Research Hypothesis	$H_1: p_2 < p_1$	$H_1: p_2 > p_1$	$H_1: p_1 \neq p_2$				
Test Statistic	$Z_{obs} = \frac{1}{\sqrt{1-1}}$	$+\frac{1}{n_2}$					
<i>p</i> -value	$P(Z < z_{obs})$	$P(Z > z_{obs})$	$2 \cdot P(Z > z_{obs})$				
STA 570 - Spring 2011 - Lecture 47							