STA 570Spring 2011Lecture 18Tuesday, March 29

 Correspondence Between Significance Tests and Confidence Intervals
 Small Sample Inference for Means

Significance Test for a Mean

Example

- The mean score for all high school seniors taking a college entrance exam equals 500.
- A study is conducted to see whether a different mean applies to those students born in a foreign country.
- For a random sample of 100 of such students, the mean and standard deviation on this exam equal 508 and 100.
- Q: Is mean significantly different from 500 for international students?

Significance Test for a Mean

Assumptions

- What type of data?
 - Quantitative
- What is the population distribution?
 - No special assumptions.
 - The test refers to the population mean of the quantitative variable.
- Which sampling method has been used?
 - Random sampling
- What is the sample size?
 - Minimum sample size of n=30 to use Central Limit Theorem with estimated standard deviation

Significance Test for a Mean

Hypotheses

- The null hypothesis has the form $H_0: \mu = \mu_0$ where μ_0 is an a priori (before taking the sample) specified number like 0 or 5.3 or 500
- The most common alternative hypothesis is $H_1: \mu \neq \mu_0$
- This is called a two-sided hypothesis, since it includes values falling above and below the null hypothesis

Significance Test for a Mean Test Statistic

- The hypothesis is about the population mean
- So, a natural test statistic would be the sample mean
- The sample mean has, for sample size of at least n=25, an approximately normal sampling distribution
- The parameters of the sampling distribution are, under the null hypothesis,
 - Mean = μ_0 (that is, the sampling distribution is centered around the hypothesized mean)

- Standard error =
$$\frac{\sigma}{\sqrt{n}}$$
, estimated by $\frac{s}{\sqrt{n}}$

Significance Test for a Mean Test Statistic

- Then, the *z*-score has a standard $z = \frac{\overline{Y} - \mu_0}{s/\sqrt{n}}$ normal distribution
- The z-score measures how many estimated standard errors the sample mean falls from the hypothesized population mean
- The farther the sample mean falls from μ_0 the larger the absolute value of the *z* test statistic, and the stronger the evidence against the null hypothesis

Significance Test for a Mean *p-Value*

- The *p*-value has the advantage that different test results from different tests can be compared: The *p*-value is always a number between 0 and 1
- It is the probability that a standard normal distribution takes values more extreme than the observed z score
- The smaller the *p*-value is, the stronger is the evidence against the null hypothesis and in favor of the alternative hypothesis
- Round *p*-value to two or three significant digits

Example

- The mean score for all high school seniors taking a college entrance exam equals 500.
- A study is conducted to see whether a different mean applies to those students born in a foreign country.
- For a random sample of 100 of such students, the mean and standard deviation on this exam equal 508 and 100.
- 1. Set up hypotheses for a significance test.
- 2. Compute the test statistic.
- 3. Report the *P*-value, and interpret.
- 4. Can you conclude that the population mean for students born in a foreign country equals 500? Why or why not?
- 5. Make a decision about H_0 , using alpha=0.05

6.Construct a 95% confidence interval for mu.

Correspondence Between Tests and Confidence Intervals

- Results of confidence intervals and of two-sided significance tests are consistent:
 - Whenever the hypothesized mean μ_0 is not in the confidence interval around \overline{Y} , then the *p*-value for testing $H_0: \mu = \mu_0$ is smaller than 5% (significance at the 5%-level)
 - In general, a (1-alpha)-confidence interval corresponds to a test at significance level alpha
 - This is true for means as well as proportions

- Recall: The research hypothesis is usually the alternative hypothesis
- This is the hypothesis that we want to prove by rejecting the null hypothesis
- Assume that we want to prove that μ is larger than a particular number μ_0
- Then, we need a one-sided test with hypotheses

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu > \mu_0$$

- Example: Usually, students have an average score of 85% on the STA 570 midterm exam
- You want to prove that a certain learning method helps improve the score
- 40 students try out the new method
- Null hypothesis: $H_0: \mu = 85\%$
- Alternative hypothesis: $H_1: \mu > 85\%$

- Attention! For one-sided and two-sided tests, the calculation of the *p*-value is different!
- For this example, "everything at least as extreme as the observed value" is everything above the observed value

 $(\text{if } H_1 : \mu > \mu_0)$

STA 570 - Spring 2011 - Lecture 18

Example

• For a large sample test of the hypothesis $H_0: \mu = 0 \text{ vs. } H_1: \mu \neq 0$

the z test statistic equals 1.04.

- a) Find the *p*-value and interpret.
- b) Suppose z= 2.50 rather than 1.04. Find the p-value. Does this provide stronger, or weaker, evidence against the null hypothesis?
- c) Complete part a) for the one-sided alternative

 $H_1: \mu > 0$

- Note also that when, for example, the hypothesis with mean "0" is rejected, then for all numbers less than 0, the null hypothesis would also be rejected
- For example, the mean "-2" would also be rejected
- Therefore, in this one-sided test, we could also write

$$H_0: \mu \le \mu_0$$
 vs. $H_a: \mu > \mu_0$

STA 570 - Spring 2011 - Lecture

• If we want to prove that μ is smaller than a particular number μ_0 , then

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu < \mu_0$

 The P-value is obtained taking the probability of all Y-values *less* than the observed Y-value

One-Sided Versus Two-Sided Test

- Two-sided tests are more common
- Look for formulations like
 - "test whether the mean has changed"
 - "test whether the mean has increased"
 - "test whether the mean is the same"
 - "test whether the mean has decreased"

Significance Test for a Proportion

Assumptions

- What type of data?
 - Qualitative
- Which sampling method has been used?
 - Random sampling
- What is the sample size?
 - n=20 if P_0 is between 0.25 and 0.75
 - In general (rule of thumb): Choose n such that

$$n > 5/p_0$$
 and $n > 5/(1-p_0)$

Significance Test for a Proportion

Hypotheses

- Null hypothesis H₀: p = p₀
 where P₀ is a priori specified
- Alternative hypotheses can be one-sided or two-sided
- Again, two-sided is more common

Significance Test for a Proportion

 $\mathsf{Z}_{\mathsf{obs}}$

estimator of the parameter – null hypothesis value of the parameter

standard error of the estimator

 $=\frac{\widehat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}$

P-Value

- Calculation is exactly the same as for the test for a mean
- Find one- or two-sided tail probabilities using online tools

Example

- Let *p* denote the proportion of Kentuckians who think that government environmental regulations are too strict
- Test H₀: p=0.5 against a two-sided alternative using data from a telephone poll of 834 people in which 26.6% said regulations were too strict
- 1. Calculate the test statistic
- 2. Find the *p*-value and interpret
- 3. Using alpha=0.01, can you determine whether a majority or minority think that environmental regulations are too strict, or is it plausible that *p=0.5*?
- 4. Construct a 99% confidence interval. Explain the advantage of the confidence interval over the test.

Summary

Large Sample Significance Test for a Mean

	One-Sided Tests		Two-Sided Test
Null Hypothesis	$H_0: \mu = \mu_0$		
Research Hypothesis	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
Test Statistic	$z = \frac{\overline{Y} - \mu_0}{s / \sqrt{n}}$		
<i>p</i> -value	$P(Z < z_{obs})$	$P(Z > z_{obs})$	$2 \cdot P(Z > z_{obs})$
STA 570 - Spring 2011 - Lecture 21			

Large Sample Significance Test for a Population Proportion

	One-Sided Tests		Two-Sided Test
Null Hypothesis	Ŀ		
Research Hypothesis	$H_1: p < p_0$	$H_1: p > p_0$	$H_1: p \neq p_0$
Test Statistic	$z_{obs} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$		
<i>p</i> -value	$P(Z < z_{obs})$	$P(Z > z_{obs})$	$2 \cdot P(Z > z_{obs})$

STA 570 - Spring 2011 - Lecture

Sample Size: Test for a Mean

	One-Sided Tests		Two-Sided Test
Null Hypothesis	$H_0: \mu = \mu_0$		
Research Hypothesis	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
Sample Size	$\left(\sigma \frac{Z_{1-\beta} + Z_{1-\alpha}}{\mu_0 - \mu_1}\right)^2$		$\left(\sigma \frac{Z_{1-\beta} + Z_{1-\alpha/2}}{\mu_0 - \mu_1}\right)^2$

 $z_p = p$ th quantile of standard normal

Sample Size: Test for a Proportion

	One-Sided Tests		Two-Sided Test
Null Hypothesis	$H_0: p = p_0$		
Research Hypothesis	$H_1: p < p_0$	$H_1: p > p_0$	$H_1: p \neq p_0$
Sample Size	$\left(\frac{z_{1-\beta}s_1 + z_{1-\alpha}s_0}{p_0 - p_1}\right)^2$		$\left(\frac{z_{1-\beta}s_1 + z_{1-\alpha/2}s_0}{p_0 - p_1}\right)^2$

 $z_p = p$ th quantile of standard normal

STA 570 - Spring 2011 - Lecture

Multiple Choice Question I

- A 95% confidence interval for mu is (96,110). Which of the following statements about significance tests for the same data are correct?
 - a) In testing the null hypothesis mu=100 (two-sided), P>0.05
 - b) In testing the null hypothesis mu=100 (two-sided), P<0.05</p>
 - c) In testing the null hypothesis mu=x (two-sided), P>0.05 if x is any of the numbers inside the confidence interval
 - d) In testing the null hypothesis mu=x (two-sided), P<0.05 if x is any of the numbers outside the confidence interval

Multiple Choice Question II

- The P-value for testing the null hypothesis mu=100 (two-sided) is P=.001. This indicates
 - a) There is strong evidence that mu = 100
 - b) There is strong evidence that mu does not equal 100
 - c) There is strong evidence that mu > 100
 - d) There is strong evidence that mu < 100
 - e) If mu were equal to 100, it would be unusual to obtain data such as those observed

Multiple Choice Question II

- The P-value for testing the null hypothesis mu=100 (two-sided) is P=.001. Suppose that in addition you know that the z score of the test statistic was z=3.29. Then
 - a) There is strong evidence that mu = 100
 - b) There is strong evidence that mu > 100
 - c) There is strong evidence that mu < 100

Small Sample Confidence Interval for a Mean

- What if we want to make inference about the population mean, but our sample size is not big enough to meet the minimal sample size requirement n>25 to apply the central limit theorem?
- Confidence intervals are constructed in the same way as before, but now we are using *t*-values instead of *z*-values
- For a random sample *from a normal distribution*, a 95% confidence interval for mu is

$$\overline{Y} \pm t_{0.025} \frac{S}{\sqrt{n}}$$

- where t_{0.025} is a t-score (instead of z-score) from a site like http://stattrek.com/Tables/T.aspx
- degrees of freedom are df=n-1

Small Sample Hypothesis Test for a Mean

- Assumptions
 - Quantitative variable, random sampling, population distribution is normal, any sample size
- Hypotheses
 - Same as in the large sample test for the mean

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$$

or $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu > \mu_0$
or $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu < \mu_0$

Small Sample Hypothesis Test for a Mean

- Test statistic
 - Exactly the same as for the large sample test

$$t_{obs} = \frac{\overline{Y} - \mu_0}{s / \sqrt{n}}$$

- *p*-Value
 - Same as for the large sample test (one-or two-sided), but using an online tool for the *t* distribution
- Conclusion
 - Report p-value and make formal decision

Small Sample Hypothesis Test for a Mean: Example

- A study was conducted of the effects of a special class designed to improve children/s verbal skills
- Each child took a verbal skills test twice, both before and after a three-week period in the class
- Y=2nd exam score 1st exam score
- If the population mean for Y, E(Y)=mu equals 0, the class has no effect
- Test the null hypothesis of no effect against the alternative hypothesis that the effect is positive
- Sample (*n*=4): 3,7,3,3

Normality Assumption

- An assumption for the *t*-test is that the population distribution is normal
- In practice, it is impossible to be 100% sure if the population distribution is normal
- It is useful to look at histogram or stemand-leaf plot (or normal probability plot) to check whether the normality assumption is reasonable

Normality Assumption

- Good news: The *t*-test is relatively *robust* against violations of the assumption that the population distribution is normal
- Unless the population distribution is highly skewed, the *p*-values und confidence intervals are fairly accurate
- However: The random sampling assumption must never be violated, otherwise the test results are completely invalid

Summary: Small Sample... Significance Test for a Mean (Assumption: Population distribution is normal)

	One-Sided Tests		Two-Sided Test
Null Hypothesis	$H_0: \mu = \mu_0$		
Research Hypothesis	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
Test Statistic	$t_{obs} = \frac{\overline{Y} - \mu_0}{s / \sqrt{n}}$, degrees of freedom = $n - 1$		
<i>p</i> -value	$P(T_{n-1} < t_{obs})$	$P(T_{n-1} > t_{obs})$	$2 \cdot P(T_{n-1} > t_{obs})$

t-Distributions

- The t-distributions are bell-shaped and symmetric around 0
- The smaller the degrees of freedom, the more spread out is the distribution
- *t*-distributions look almost like a normal distribution
- In fact, the limit of the t-distributions is a normal distribution when n gets larger

35

STA 570 - Spring 2011 - Lecture

Statistical Methods for One Sample Summary I

- Testing the Mean
 - Large sample size (30 or more):
 - Use the large sample test for the mean

(z-Scores, normal distribution)

– Small sample size:

Check whether the data is not very skewed Use the *t* test for the mean (*t*-Scores, *t* distribution)

Statistical Methods for One Sample Summary II

- Testing the Proportion
 - Large sample size (np>5, n(1-p)>5):
 - Use the large sample test for the proportion

(z-Scores, normal distribution)

– Small sample size:

Binomial distribution

(not covered in class)

quiz

STA 570 - Spring 2011 - Lecture 18