STA 570

Spring 2011

Lecture 14

Tuesday, March 8

>Hypothesis Tests

STA 570 - Spring 2011 - Lecture 14

Midterm Exam

- Midterm Exam
 20%
- Final Exam 30%
- Homework 30%
- Quizzes 20%

	Example 1	Example 2
Midterm	78	97
Final	90	75
Homework	96	75
Quizzes	94	73
Overall	90	79

Hypothesis Testing

- Fact: It is easier to prove that a parameter isn't equal to a particular value than it is to prove it is equal to a particular value
- Hypothesis testing: Proof by contradiction:

 we set up the belief we wish to disprove as the null hypothesis (H₀) and the belief we wish to prove as our alternative hypothesis (H₁) (or: research hypothesis)

Analogy: Court trial

 In American court trials, the jury is instructed to think of the defendant as innocent:

H₀: Defendant is innocent

- District attorney, police involved, plaintiff, etc., bring every evidence, hoping to prove H₁: Defendant is guilty
- Which hypothesis is correct?
- Does the jury make the right decision?

Back to statistics ... Critical Concepts

- Two hypotheses: the null and the alternative
- Process begins with the assumption that the null is true
- We calculate a test statistic to determine if there is enough evidence to infer that the alternative is true
- Two possible decisions:
 - Conclude there is enough evidence to reject the null (and therefore accept the alternative)
 - Conclude that there is not enough evidence to reject the null
- Two possible errors?

STA 570 - Spring 2011 - Lecture

What about those errors?

Two possible errors:

- Type I error: Rejecting the null when we shouldn't have [P(Type I error) = α]
- Type II error: Not rejecting the null when we should have [P(Type II error) = β]

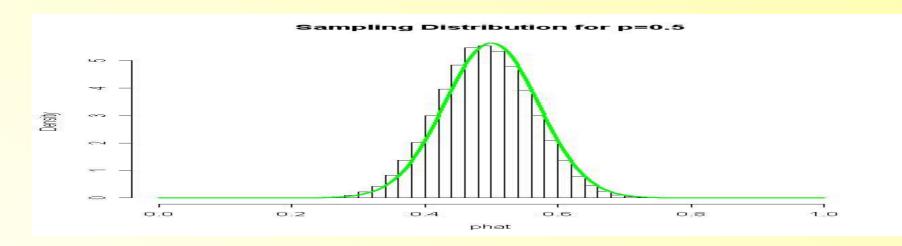
Hypothesis Testing Example

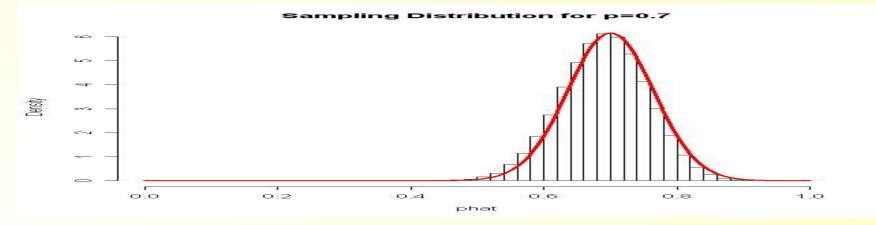
- You are given a coin. You know the coin might be fair (50% heads, 50% tails), but the coin might also be weighted (70% heads, 30% tails).
- You flip the coin 50 times and get 29 heads. Is the coin fair or weighted?

Sampling Distributions for Each Kind of Coin

- Suppose the coin is weighted, so p=0.7.
- If you flip the coin n=50 times, the sampling distribution of the proportion of heads p-hat is normal with mean p=0.7 and standard deviation sqrt(p(1-p)/n) = sqrt(0.7*0.3/50) = 0.0648.
- If the coin is fair, with p=0.5, the sampling distribution of p-hat is normal with mean p=0.5 and standard deviation sqrt (0.5*0.5/50) = 0.0707.

Need Cutoff to Separate These Groups.





STA 570 - Spring 2011 - Lecture

9

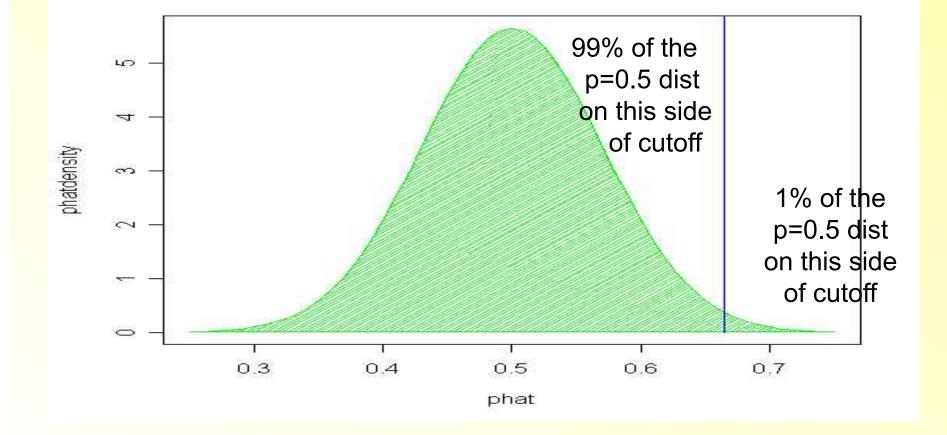
Determining a Cutoff

- We choose the cutoff to either
 - set the proportion of fair coins that are classified correctly, or
 - set the proportion of weighted coins that are classified correctly.
- We assume that the coin is fair (null hypothesis), and we try to find evidence against this.
- That is, H₀ : p=0.5 vs. H₁ : p=0.7 STA 570 - Spring 2011 - Lecture

Example, contd.

- Return to n=50, which resulted in p-hat ~ N(0.5,0.0707) for H_0 : p=0.5 p-hat ~ N(0.7,0.0648) for H_1 : p=0.7
- Let us determine a cutoff where the probability that a p=0.5 coin is classified correctly is 99%.
- We classify a coin as p=0.5 if p-hat is below the cutoff, so we need a cutoff that is the 99th percentile of a N(0.5,0.0707) distribution.

A cutoff of 0.6645 results in 99% correct classification of p=0.5 coins.



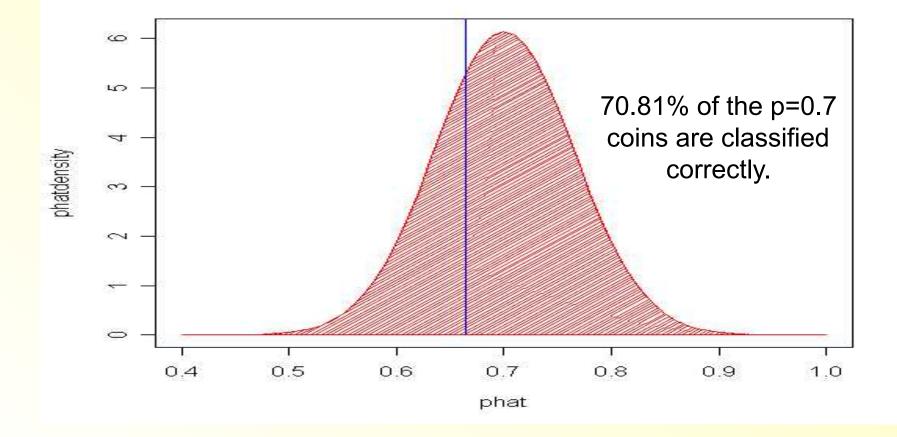
STA 570 - Spring 2011 - Lecture

12

What about the weighted (p=0.7) coins?

- For the chosen cutoff of 0.6645, we can also find the probability a p=0.7 coin is correctly classified.
- We need to find the probability a N (0.7,0.0648) is greater than the cutoff of 0.6645, which is 70.81%.

70.81% of the p=0.7 coins are classified correctly with cutoff=0.6645



STA 570 - Spring 2011 - Lecture

14

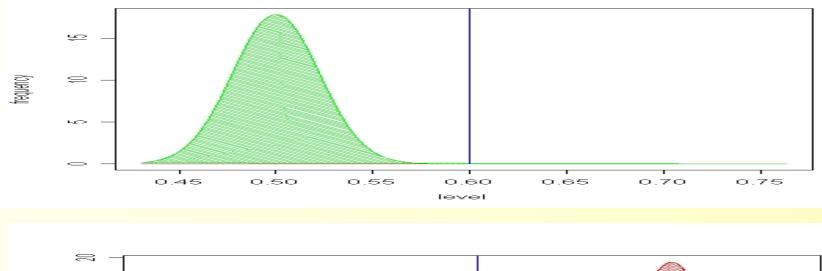
Larger Sample Sizes Increase Accuracy

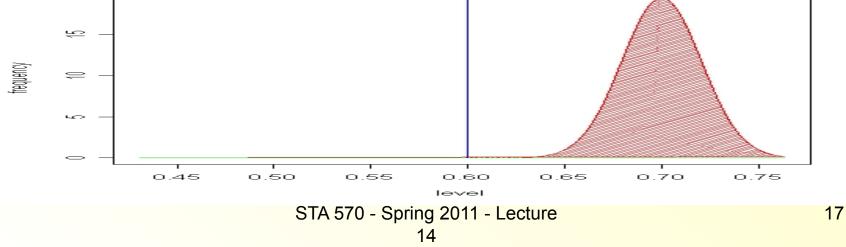
- Simple way to make a stronger test:
- Flip the coin more than 50 times.
- This changes both sampling distributions, reducing the standard deviation of both.

Suppose we flip the coin n=500 times

- When p=0.5, the sampling distribution is normal with mean 0.5 and standard deviation sqrt(0.5*0.5/500) = 0.0224
- When p=0.7, the sampling distribution is normal with mean 0.7 and standard deviation sqrt(0.7*0.3/500) = 0.0205
- The two groups are now well separated.

Now the groups are well separated





Terminology

- Choosing the group corresponding to H₁ is called "rejecting the null hypothesis"
- Choosing the group corresponding to H₀ is called "not rejecting the null hypothesis"

More Terminology

- Note: We set the probability that the correct decision is made when H_0 is true. This probability is typically termed 1- α .
- Thus, α is the probability of making a mistake when H₀ is true (rejecting when you should NOT reject).
- Once α is set, the cutoff is determined. The most common value for α is 0.05.
- Aside from making α small (it is the chance of a mistake) there is no absolute justification for this choice compared to others.

More Terminology

- The choice of α determines the cutoff, and thus the probability of making the correct decision when H_1 is true (when H_1 is true the correct decision is to reject the null hypothesis).
- This probability is called the *power* of the test.
- Thus, we want $1-\alpha$ and the power to be high (close to 1).

Four Possibilities

- There are two possible states of the world

 either the null hypothesis is true or the
 alternative hypothesis is true.
- You can make two decisions either reject the null hypothesis or do not reject the null hypothesis.
- Thus, there are four possibilities. Two correspond to correct decisions and two are errors.

The four possibilities, with terminology

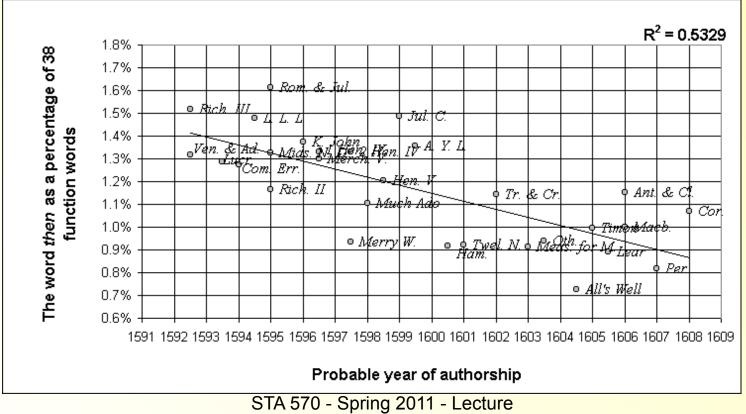
	Choose H ₀	Choose H ₁
	(" <u>do not reject H₀"</u>)	(" <u>reject H₀")</u>
H ₀ is true	Correct	WRONG!
	answer	(<u>Type I error</u>)
H ₁ is true	WRONG!	Correct
	(<u>Type II Error</u>)	answer

Type I and Type II errors

- Type I error corresponds to rejecting H_0 when H_0 is in fact true. The probability of making this mistake when H_0 is true is α
- Type II error corresponds to not rejecting H₀ when H₁ is in fact true. The probability of making this mistake when H₁ is true is 1 minus the power of the test.

By the way..regression is also useful for this

 Which of the Shakespeare Sonnets were really within the Shakespeare canon?



24

Example

- Suppose you have a document that may or may not have been written by author Bill
- You observe that Bill uses a particular form X of the word 80% of the time
- The document in question has 84 instances of the word choice, and word X is used 58 times.

- Null hypothesis H_0 : p=0.8 vs. H_1 : p≠0.8
- The *null distribution* (when H₀ is true) is normal with mean 0.8 and standard deviation sqrt(0.8*0.2/84)=0.0436.
- The null distribution is the sampling distribution of the sample statistic when the null hypothesis is assumed true.

- We have the null distribution N(0.8,0.0436)
- Let's choose $\alpha = 0.05$
- We will reject H₀ for p-hats far away from 0.8.
- The cutoff to be the 2.5th and the 97.5th percentile of the null distribution. This corresponds to Z=(-1.96) and Z=1.96, and a cutoff of
- (-1.96)(0.0436)+0.8=0.7145 and
- (1.96)(0.0436)+0.8=0.8855

- (-1.96)(0.0436)+0.8=0.7145 and
- (1.96)(0.0436)+0.8=0.8855
- Our *rejection region* consists of those values of p-hat that are not between 0.7145 and 0.8855
- Our actual observed phat was 58/84=0.6904.
- Thus our conclusion is to reject H₀. We would conclude that H₁ is true and that Bill did not write the document.

- How likely is 58/84=0.6904 under the null hypothesis?
- The z-score is (0.6904-0.8)/0.0436= -2.51.
- Beyond (Here="below") a z-score of -2.51 is probability 0.00597.
- All values at least as extreme as a z-score of -2.51 have together probability 2 x 0.00597 = 0.0119.
- This is the *P-value: The probability, assuming* that the null hypothesis is true, of observing anything at least as extreme as what we actually observed.
- "As extreme" = "providing as much, or more evidence against the null hypothesis"

STA 570 - Spring 2011 - Lecture

- By construction, the probability of type I error is α =0.05=5%. What is the probability of type II error?
- Type II error is not rejecting H_0 when in fact H_1 is true.
- Assume that another author, Maria, could have written the manuscript, and she chooses form X 60% of the time.
- The sampling distribution for her would be the *alternative distribution* (when H₁ is true), normal with mean 0.6 and standard deviation sqrt(0.6*0.4/84) =0.0535.
- We need to find the probability that the alternative distribution places above the cutoff 0.7145.
- The Z-score for a N(0.6,0.0535) is Z=(0.7145-0.6)/0.0535=2.14 and the probability of type Il error is 0.01609=1.6% STA 570 - Spring 2011 - Lecture 30

Another Example

- A person claims to have ESP.
- You test him/her by having one of four images displayed on a computer screen to a second individual.
- The individual claiming to have ESP has to guess what is on the computer screen.
- Just by random guessing, you would expect the "ESP person" to get 25% of the images correct.
- Thus, a claim of ESP would be strengthened if the person guessed more than 25% of the images correctly.

ESP Example in Statistical Terms

- Suppose you show the person n=100 images. Each guess is correct or incorrect (binary, dichotomous).
- The proportion of correct guesses is phat.
- The true proportion of correct guesses (unknown to us) is p.
- Under random guessing, p=0.25
- If the person has ESP, p>0.25

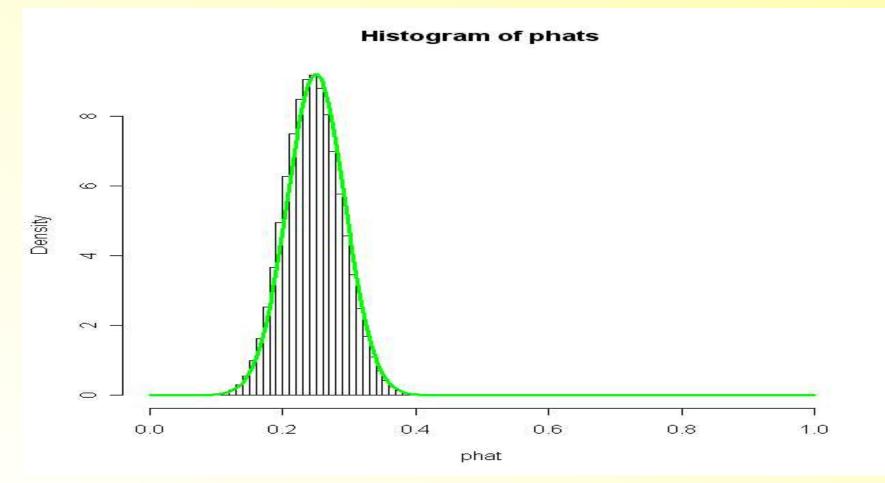
Null and Alternative Hypotheses

- The cutoff is based on the null hypothesis.
- H₀: p=0.25 allows us to find a sampling distribution.
- The hypothesis "p>0.25" would not determine a "p" and a sampling distribution.
- It is a composite, one-sided alternative.
- The alternative hypothesis is the "interesting conclusion" which would get the paper published.

Null Distribution

- Under the null hypothesis, p=0.25.
- n=100.
- Thus, the null distribution is normal with mean 0.25 and standard deviation sqrt (0.25*0.75/100)=0.0433).
- The null distribution here is the distribution of correct guesses under random guessing.

Sampling Distribution Under H_0 : p=0.25



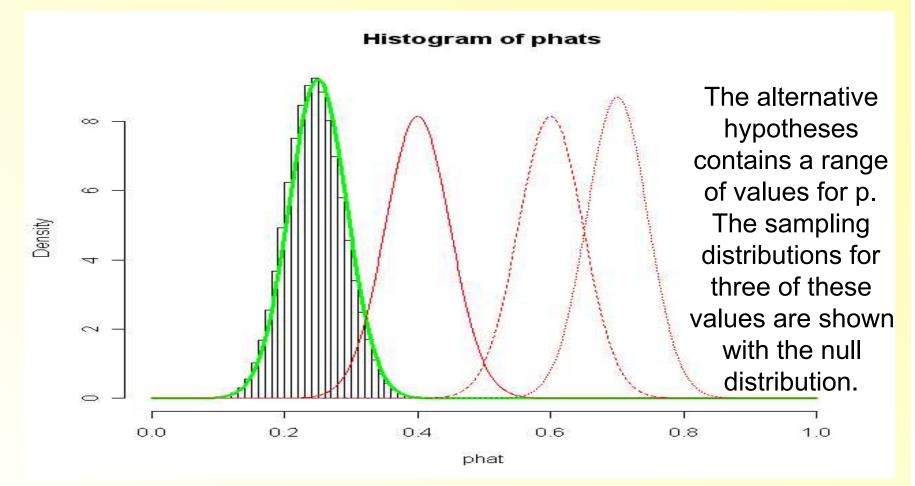
STA 570 - Spring 2011 - Lecture

35

Difficulty of Composite Alternative Hypotheses

- Finding the sampling distribution under H₁ is impossible.
- H₁ : p>0.25 only specifies a range for p.
- The true proportion p might be 0.8, it might be 0.3, it might be 0.99, we don't know.
- This is different from the "Bill vs. Maria" where the two possible models where exactly specified.

Any of the Red Curves Could Be the Alternative Distribution



STA 570 - Spring 2011 - Lecture

37

Where to Place the Cutoff?

- The alternative hypothesis is designed to be the "interesting conclusion", thus the statistical test is designed to avoid mistakenly choosing H₁.
- Thus, we give H₀ the "benefit of the doubt" by choosing a small probability of type I error.

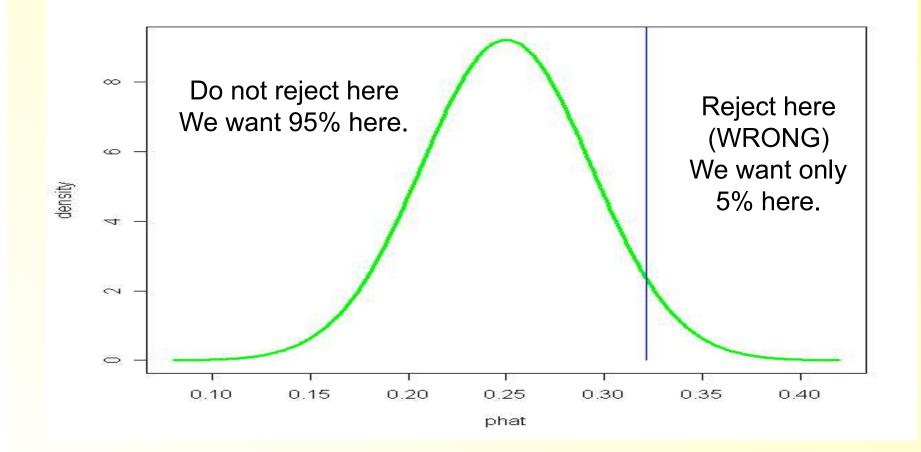
Why Give H₀ the Benefit of the Doubt?

- In the ESP example, we probably would not be convinced if someone did just a little better than 25%.
- While 25% is the expected number of correct guesses, you could do a little better based on chance alone.
- So how much better does the person have to do before you'd start to believe them?

Finding the Cutoff

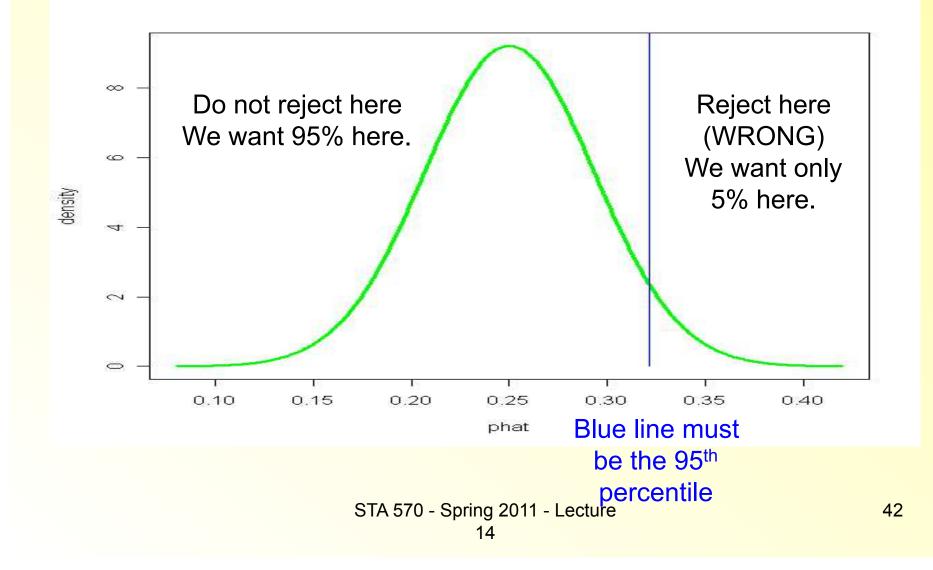
- Again let's choose α=0.05
- The null hypothesis contains p=0.25 while the alternative hypothesis contains p>0.25. Thus, we reject H₀ for large values of phat.
- We need 95% of the null distribution below the cutoff.

Null Distribution



STA 570 - Spring 2011 - Lecture

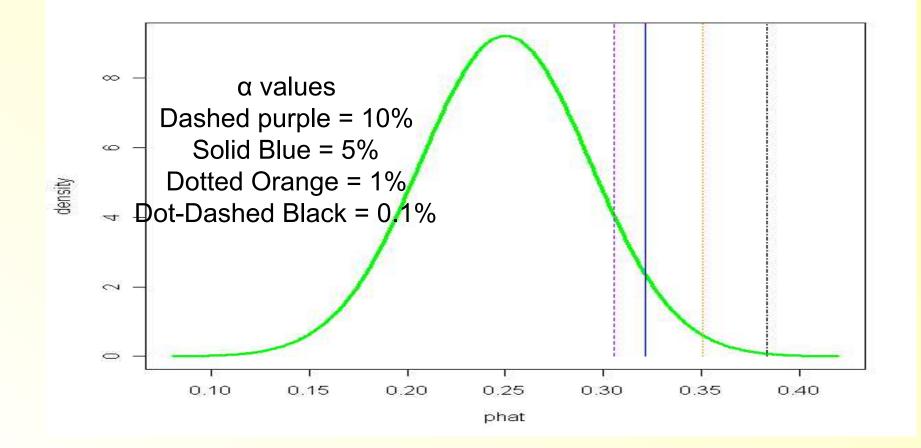
Null Distribution



Finding the 95th Percentile

- The null distribution is normal with mean 0.25 and standard deviation 0.0433
- The corresponding Z-score for the 95th percentile is 1.64 and thus the cutoff is (1.64)(0.0433)+0.25=0.3210.
- This cutoff says:
 - Getting a little more than 25% correct out of 100 isn't enough to convince us.
 - Our benefit of the doubt says we don't believe H₁ until you get at least 32.10% correct.

Different α Values Result in Different Cutoffs



STA 570 - Spring 2011 - Lecture

44

Type I and Type II Errors

	Choose H ₀	Choose H ₁
	(" <u>do not reject H₀"</u>)	(" <u>reject H</u> _")
H ₀ is true	Correct	WRONG!
	answer	(<u>Type I error</u>)
H ₁ is true	WRONG!	Correct
	(<u>Type II Error</u>)	answer

Type I and Type II Errors

- We reject p=0.25 if p-hat is greater than 0.3210.
- The chance of making a type I error (rejecting H₀ when H₀ is in fact true) is 0.05.
- Calculating the type II error probability is more complicated.
- For each different value in the alternative, the type II error probability is different.
- For values close to 0.25 (e.g., 0.26), the type II error probability is high because the sampling distribution overlaps much with the null distribution
- For values far from 0.25 (e.g., 0.9), the probability of type II error is low.

More on Type II Error

- One issue that we will study is how many observations should we collect to achieve particular error probabilities.
- Power and sample size calculations.

Review

- We have *n* observations. The true proportion, *p*, is unknown.
- We have a null value of H_0 : $p=p_0$, and depending on the setting may want to test H_1 : $p>p_0$ or H_1 : $p<p_0$, or H_1 : $p\neq p_0$.
- The alternative depends on the "scientifically interesting" conclusion.
- It may only matter if p is above p₀, or p below p₀, or perhaps simply being different.

Review

- We use the data (specifically p-hat, the sample proportion) to make one of two conclusions.
- One conclusion is to reject H₀, indicating that the data are not consistent with H₀.
- The other possible conclusion is to "not reject H₀", which indicates the data is consistent with H₀.
- This is not the same as saying H₀ is true, since it is impossible to distinguish, with finite data, "p=p₀" from "p very close to p₀."

Significance Tests: Summary

- A significance test checks whether data agrees with a hypothesis
- A hypothesis is a statement about a characteristic of a variable or a collection of variables
- If the data is very unreasonable under the hypothesis, then we will reject the hypothesis
- Usually, we try to find evidence *against* the hypothesis

Logical Procedure

- 1. State a hypothesis that you would like to find evidence against
- 2. Get data and calculate a statistic (for example: sample mean)
- 3. The hypothesis (for example: population mean equals 5) determines the sampling distribution of our statistic
- 4. If the calculated value in 2. is very unreasonable given 3., then we conclude that the hypothesis was wrong

Significance Test

- A significance test is a way of statistically testing a hypothesis by comparing the data to values predicted by the hypothesis
- Data that fall far from the predicted values provide evidence against the hypothesis

Elements of a Significance Test

- Assumptions
- Hypotheses
- Test Statistic
- P-value
- Conclusion

Assumptions

- What type of data do we have?
 - Qualitative or quantitative?
 - Different types of data require different test procedures
- What is the population distribution?
 - Is it normal? Symmetric?
 - Some tests require normal population distributions
- Which sampling method has been used?
 - We always assume simple random sampling
 - Other sampling methods are discussed in STA 675
- What is the sample size?
 - Some methods require a minimum sample size (like n=30)

Hypotheses

- The *null hypothesis (H₀)* is the hypothesis that we test (and try to find evidence against)
- The name null hypothesis refers to the fact that it often (not always) is a hypothesis of "no effect" (no effect of a medical treatment, no difference in characteristics of countries, etc.)
- The alternative hypothesis (H_a) is a hypothesis that contradicts the null hypothesis
- When we reject the null hypothesis, the alternative hypothesis is judged acceptable
- Often, the alternative hypothesis is the actual research hypothesis that we would like to "prove" by finding evidence against the null hypothesis (proof by contradiction)

Hypotheses

The hypothesis is always a statement about one or more population parameters.

Test Statistic

- The test statistic is a statistic that is calculated from the sample data
- Often, the test statistic involves a point estimator of the parameter about which the hypothesis is stated
- For example, the test statistic may involve the sample mean or sample proportion if the hypothesis is about the population mean or population proportion

P-Value

- How unusual is the observed test statistic when the null hypothesis is assumed true?
- The *P-value* is the probability, assuming that *H₀* is true, that the test statistic takes values at least as contradictory to *H₀* as the value actually observed
- The smaller the P-value, the more strongly the data contradict H₀

Conclusion

- In addition to reporting the P-value, a formal decision is made about rejecting or not rejecting the null hypothesis
- Most studies choose a cutoff of 5%.
- This corresponds to rejecting the null hypothesis for P-values smaller than 0.05.
- Smaller P-values provide more significant evidence against the null hypothesis
- "The results are significant at the 5% level"

Quiz

STA 570 - Spring 2011 - Lecture

60