STA 570Spring 2011Lecture 11Tuesday, Feb 22

Sampling Distribution

STA 570 - Spring 2011 - Lecture 11

Sampling Distributions

- For the probability theory to work, your samples need to be drawn randomly from the population;
- Recall: "Simple random sample" means that every sample has the same probability of being chosen.
- Unfortunately, random samples will give different results each time – because of sampling variation.
- Fortunately, however, probability theory allows us to conclude that there is a <u>predictable pattern of</u> <u>variation</u> among the samples.

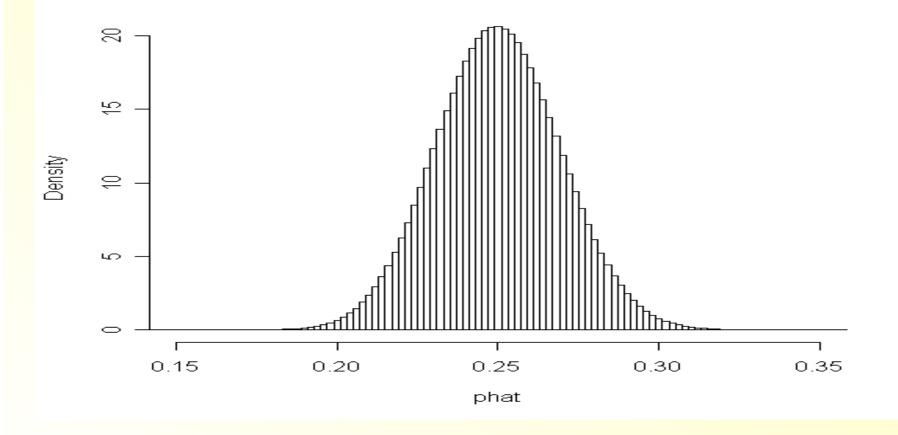
Example 3

- We are interesting in determining what proportion of a population visits a doctor at least once a year.
- Our population contains 100,000 individuals. Unknown to us, 25,000 visit a doctor at least once a year while 75,000 do not.
- We decide to sample 500 at random and determine whether those individuals visit a doctor at least once a year (termed a success), as opposed to those who do not visit a doctor at least once a year (termed a failure).

- Note our population parameter is p=0.25 (25,000 out of 100,000). This is typically unknown.
- Our sample of 500 might yield 130 successes, resulting in a sample proportion phat=0.260, or our sample of 500 might yield 122 successes, resulting phat=0.244.
- Because our sample is (and should be!) random, so we are not quite sure what will happen in any single sample.
- Again, however, out of the very many possible samples, a very large proportion of them have sample proportions close to the true proportion p=0.25.

- It turns out there are over 10^1365 (a one with 1365 zeroes after it) ways to pick 500 people out of 100,000 people. Your sample will be ONE of those many possible samples.
- It is still possible to figure out precisely how many of these samples contain 0 (=0%) successes, 1 (=0.2%) success, 2 (=0.4%) successes, and so on up to 500 (=100%) successes.

Graph of sample proportions for all possible samples for selecting 500 people from a population with 25000 successes and 75000 failures *(sampling distribution)*.



STA 570 - Spring 2011 - Lecture

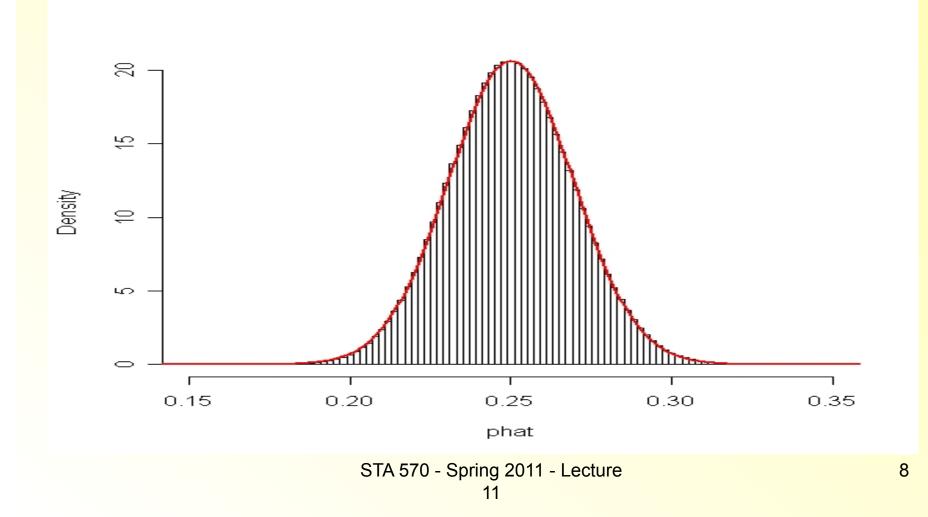
6

Hm?

- That looks like a bell curve.
- In fact, it looks suspiciously like a bell curve with mean µ=0.25 (that is where the peak is).
- And the standard deviation is (less obvious, but true)

sqrt(p(1-p)/n) = sqrt(0.25*0.75/500) = 0.0194

 The next graph combines the histogram of sample proportions with the true bell curve with mean =0.25 and standard deviation = 0.0194. Graph of sample proportions for all possible samples for selecting 500 people from a population with 25000 successes and 75000 failures, overlayed with a perfect normal curve.



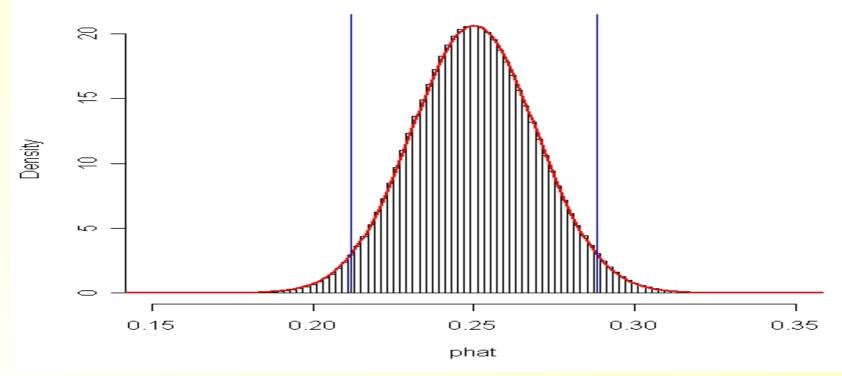
Review

- We cannot tell what will happen in any given individual sample (just as we can not predict a single coin flip in advance).
- We CAN tell a lot about the pattern of variation amongst many samples (just as we can predict that if you flip the coin a lot, you will get about 50% heads and 50% tails).
- In our doctor visits example, we found that the pattern of variation of the sample proportions, called the <u>sampling</u> <u>distribution</u>, followed a normal distribution.

Useful Consequences

- Example 3 (doctor visits): The sampling distribution of the sample proportion of successes is N(0.25,0.0194).
- Recall the 68-95-99.7 rule: About 95% probability that the sample proportion will be between 2 standard deviations (2*0.0194=0.0388) of the population proportion.
- There is a 99.7% chance the sample proportion will be within 3 standard deviations (0.0582) of the population proportion.

Empirical Rule: About 95% of our observations should fall between the blue lines



• In actuality, we have 94.5%.

STA 570 - Spring 2011 - Lecture

11

Sampling Distributions for Proportions

- Suppose we have a population of size N consisting of M successes and N-M failures.
- We sample a group of n people at random.
- Suppose further that
 - n/N is small (rule of thumb: less than 5%)
 - n is not small (rule of thumb: n>25)
 - M/N=p is not too close to 0 or 1 (rule of thumb: 0.05<p<0.95).
- Then the sampling distribution of the sample proportion is
 - normal
 - with mean M/N=p (the population proportion)
 - and standard deviation sqrt(p(1-p)/n).
- Why this is true is beyond the scope of this course. It is because of a beautiful mathematical theorem: Central Limit Theorem.

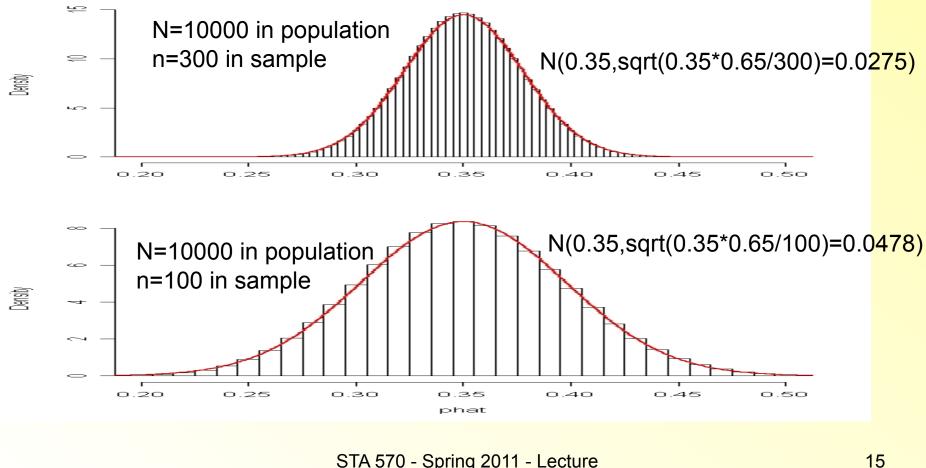
In Practice

- Unfortunately, we typically only get to draw one sample. How do you know if you got one of the samples that fall in the middle 95% (closer to the true proportion) as opposed to the outer 5% (farther from the true proportion)?
- Answer really, you don't.
- But it's more likely you're in the 95% group than the 5% group.
- Want to be more sure?
- Construct a 99% group instead of a 1% group, then the odds are even more in your favor.

What Matters, What Doesn't

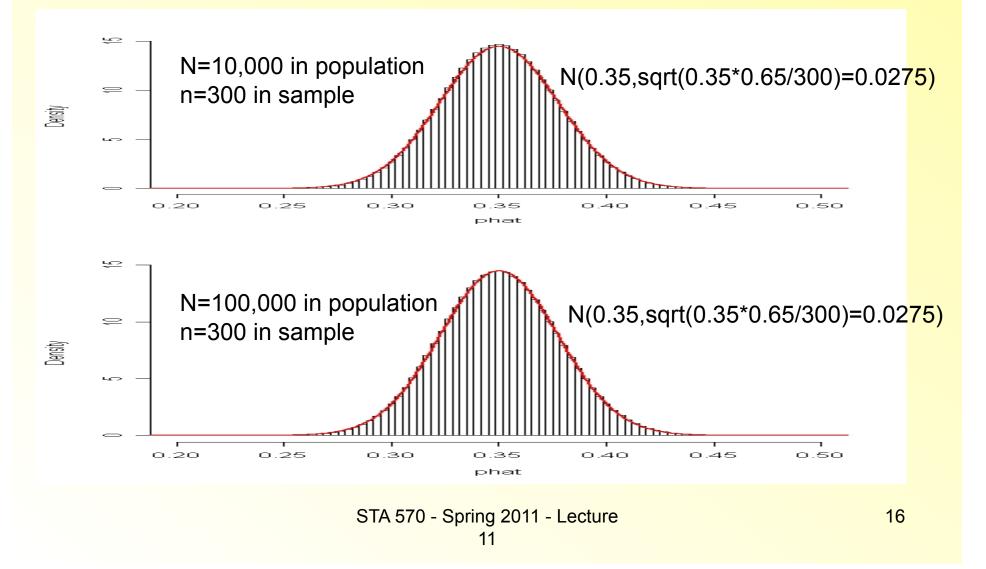
- The center of the sampling distribution is the true proportion p.
- On average, p-hat is centered around p.
- The sample size appears in the standard deviation sqrt(p (1-p)/n).
- The bigger the sample size, the smaller the standard deviation of p-hat. In other words, the closer p-hat tends to be to p.
- The population size does NOT matter.
- As long as you are sampling less than 1 in 20 people, it does not matter whether it is 1 of every 2000 or 1 of every 2 million.

Population Size N=10000, 35% Successes Comparing n=300 to n=100

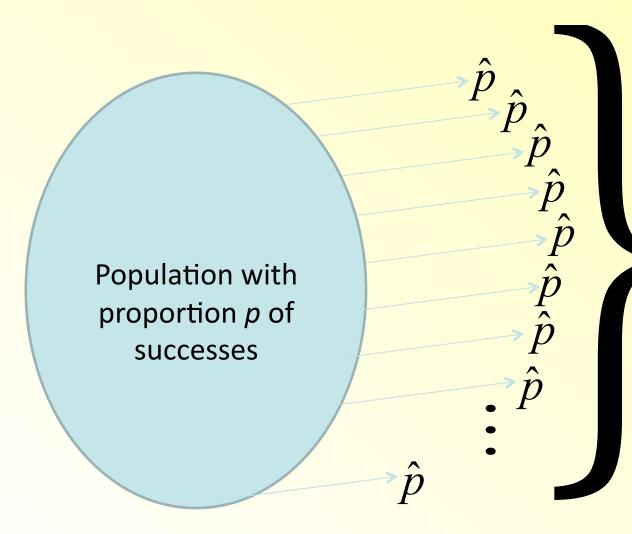


STA 570 - Spring 2011 - Lecture 11

Sample Size n=300, 35% Successes Comparing N=10000 to N=100000



Summary: Sampling Distribution



 If you repeatedly take random samples and calculate the sample proportion each time, the stribution of the sample proportions follows a pattern This pattern is called the sampling distribution of p-hat

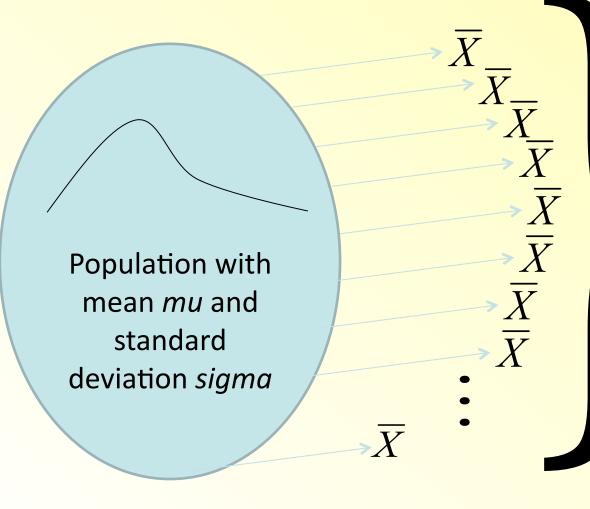
Properties of the Sampling Distribution

- Expected Value of the \hat{p} 's: p.
- Standard deviation of the \hat{p} 's: $\sqrt{\frac{p(1-p)}{n}}$

also called the *standard error* of \hat{p}

• **Central Limit Theorem**: As the sample size increases, the distribution of the \hat{p} 's gets closer and closer to the normal.

Sampling Distribution of Means



 If you repeatedly take random samples and calculate the sample mean each time, the stribution of the sample means follows a pattern This pattern is the sampling distribution of Xbar 19

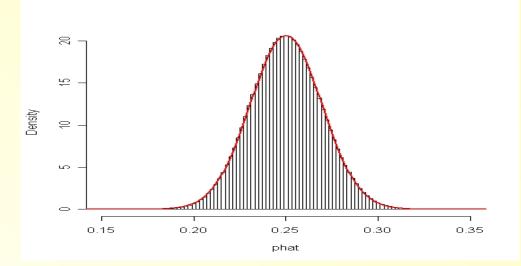
Properties of the Sampling Distribution

- Expected Value of the \overline{X} 's: μ .
- Standard deviation of the \overline{X} 's: also called the standard error of \overline{X} For N/n<20, use a finite population correction factor for the standard deviation: $\sqrt{\frac{N-n}{N-1}}$
- Central Limit Theorem: As the sample size increases, the distribution of the \overline{X} 's gets closer and closer to a normal curve.

Summary: Sampling Distribution

- We cannot tell what will happen in any given individual sample.
- We CAN tell a lot about the pattern of variation amongst many samples.

Graph of sample proportions for all possible samples for selecting 500 people from a population with 25000 successes and 75000 failures, overlaid with a perfect normal curve.



Summary: Population, Sample, and Sampling Distribution

- Population
 - Total set of all subjects of interest
 - Can be described by (unknown) parameters
 - Want to make inference about its parameters

- Sample
 - Data that we observe
 - We describe it, using descriptive statistics
 - For large *n*, the sample
 resembles the population

- Sampling Distribution
 - Probability distribution of a statistic (for example, sample mean, sample proportion)
 - Used to determine the probability that a statistic falls within a certain distance of the population parameter
 - For large *n*, the sampling distribution (of sample mean, sample proportion) looks more and more like a normal distribution

STA 570 - Spring 2011 - Lecture

Summary: Central Limit Theorem

- The most important theorem in statistics
- For random sampling, as the sample size *n* grows, the sampling distribution of the sample mean \overline{Y} (and of the sample proportion p-hat) approaches a normal distribution
- Amazing: This is the case even if the population distribution is discrete or highly skewed
 - Online applet 1
 - Online applet 2
- The Central Limit Theorem can be proved mathematically (STA 524)

Central Limit Theorem

- Usually, the sampling distribution of Y is approximately normal for sample sizes of at least n=25 (rule of thumb)
- In addition, we know that the parameters of the sampling distribution are mean=mu and standard error= σ

• For example:

If the sample size is at least *n*=25, then with 95% probability, the sample mean falls between

$$\mu - 1.96 \frac{\sigma}{\sqrt{n}}$$
 and $\mu + 1.96 \frac{\sigma}{\sqrt{n}}$

 $(\mu = \text{population mean},$

 σ = population standard deviation)

Calculating z-Scores

1. z-Score for an individual observation

You need to know Y, mu, and sigma to calculate z

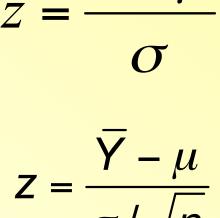
2. z-Score for a sample mean

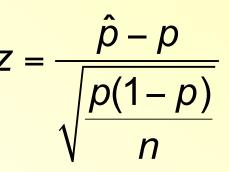
 You need to know Y-bar, mu, sigma, and n to calculate z

3. z-Score for a sample proportion

You need to know *p-hat*, *p*, and
 n to calculate *z*

STA 570 - Spring 2011 - Lecture





Example I

- For women aged 18-24, systolic blood pressures are normally distributed with mean 114.8 [mm Hg] and standard deviation 13.1 [mm Hg]
- Hypertension is commonly defined as a value above 140. If a woman between 18 and 24 is randomly selected, find the probability that her systolic blood pressure is above 140
- For a sample of 4 women, find the probability that their mean systolic blood pressure is above 140
- Note that for this problem, we don't actually need the central limit theorem because the variable "blood pressure" has a normal distribution – we don't need to rely on averages.

Example II

- Analysts think that the length of time people work at a job has a mean of 6.1 years and a standard deviation of 4.3 years.
- Do you expect this distribution to be left-skewed or right-skewed or symmetric? Why?
- Can you calculate the probability that a randomly chosen person spends less than 5 years on his/ her job?
- What is the probability that 100 people selected at random spend an average of less than 5 years on their job?

Example III: Acceptance Sampling

- Some companies monitor quality by using a method called acceptance sampling.
- An entire batch of items is rejected if a random sample of a particular size includes more than a specified number of defects.
- Assume that a company buys machine bolts in batches of 5000 and rejects the entire batch if, in a sample of 50, at least 2 defects (4% defects) are found.
- If the supplier manufactures bolts with a defect rate of 10%, what is the probability that a random batch will be rejected? How about the rejection rule "4 out of 100"?
- NB: When we use the continuous normal distribution to approximate a discrete distribution such as "number of defects", a continuity correction should be made. That is, the single value x is represented by the interval from x-0.5 to x+0.5.

STA 570 - Spring 2011 - Lecture