STA291 Fall 2008

LECTURE 8 Thursday, 19 February

Chap. 4: Numerical Descriptive Techniques

4.3 Measures of Relative Standing and Box Plots

4.2 Measures of Variability

4.4 Measures of Linear Relationship (next time)

Homework and Suggested Study Material

- [10 points] Due Saturday 11pm Assignment on CengageNOW.
- Use the Study Tools at Thomson Now, click on our Courseware Book, and work through "Chapter 4 – Numerical Descriptive Techniques". (Pre-test, study plan, and post-test)
- Suggested problems from the textbook: 4.42, 4.44, 4.46

Five-Number Summary (Review)

4

- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Statistical Software SAS output (Murder Rate Data)

Quantile	Estimate
----------	----------

100% Max	20.30
75% Q3	10.30
50% Median	6.70
25% Q1	3.90
O% Min	1.60

Note the distance from the median to the maximum compared to the median to the minimum.

Interquartile Range

(5)

- The Interquartile Range (IQR) is the difference between upper and lower quartile
- IQR = $Q_3 Q_1$
- IQR= Range of values that contains the middle 50% of the data
- IQR increases as variability increases

Box Plot (AKA Box-and-Whiskers Plot)

- A box plot is basically a graphical version of the fivenumber summary (unless there are outliers)
- It consists of a **box** that contains the central 50% of the distribution (from lower quartile to upper quartile),
- A *line* within the box that marks the median,
- And *whiskers* that extend to the maximum and minimum values, unless there are outliers

Outliers

- An observation is an outlier if it falls
 - more than 1.5 IQR above the upper quartile or
 - more than 1.5 IQR below the lower quartile
- Example: Murder Rate Data w/o DC
 - upper quartile Q3 = 10.3
 - -IQR = 6.4
 - $-Q3 + 1.5 IQR = ____$
 - Any outliers?

Illustrating Boxplot with Murder Rate Data

• (w/o DC—key: 20|3 = 20.3)

		Stem Leaf	#
		20 3	1
0		19	
Quantile	Estimate	18	
		17	
100% Max	20.20	16	
100% Max	20.30	15	
75% Q3	10.30	14	
50% Median	6.70	13 135	3
25% 01	3 90	12 7	1
23% QI	3.30	11 334469	6
0% Min	1.60	10 2234	4
		9 08	2
		8 03469	5
		7 5	1
		6 034689	6
		5 0238	4
		4 46	2
		3 0144468999	10
		2 039	3
		1 67	2
		+	

Measures of Variation

- Mean and Median only describe a typical value, but not the spread of the data
- Two distributions may have the same mean, but different variability
- Statistics that describe variability are called measures of variation (or dispersion)

Sample Measures of Variation

----- ((10

• Sample Range: **Difference between maximum and minimum sample** value • Sample Variance: $s^2 = \frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2}$

n-1

- Sample Standard Deviation: $s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i \overline{x})^2}{n-1}}$
- Sample Interquartile Range: Difference between upper and lower quartile of the sample

Population Measures of Variation

Population Range:

Difference between maximum and minimum population values • Population Variance: $\sigma^2 = \frac{\sum (x_i - \mu)^2}{\sum (x_i - \mu)^2}$

----- ((11))

- Population Standard Deviation: $\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i \mu)^2}{N}}$
- Population Interguartile Range: Difference between upper and lower quartile of the population

Range

- Range: Difference between the largest and smallest observation
- Very much affected by outliers (one misreported observation may lead to an outlier, and affect the range)
- The range does not always reveal different variation about the mean

--- ((13

- The deviation of the i^{th} observation, x_i , from the sample mean, \overline{x} , is $x_i \overline{x}$, the difference between them
- The sum of all deviations is zero because the sample mean is the center of gravity of the data (remember the balance beam?)
- Therefore, people use either the sum of the absolute deviations or the sum of the squared deviations as a measure of variation

The *variance* of *n* observations is the sum of the squared deviations, divided by n - 1.

Variance: Interpretation

- The variance is about the average of the squared deviations
 - "average squared distance from the mean"
- Unit: square of the unit for the original data
- Difficult to interpret
- Solution: Take the square root of the variance, and the unit is the same as for the original data

Sample standard deviation

16

• The standard deviation *s* is the positive square root of the variance

Standard Deviation: Properties

- $s \ge o$ always
- *s* = *o* only when all observations are the same
- If data is collected for the whole population instead of a sample, then *n*-1 is replaced by *n*
- *s* is sensitive to outliers

Standard Deviation Interpretation: Empirical Rule

- *If* the histogram of the data is *approximately symmetric and bell-shaped*, then
 - About 68% of the data are within one standard deviation from the mean
 - About 95% of the data are within two standard deviations from the mean

– About 99.7% of the data are within three standard deviations from the mean

Sample Statistics, Population Parameters

- Population mean and population standard deviation are denoted by the Greek letters μ (mu) and σ (sigma)
- They are unknown constants that we would like to estimate
- Sample mean and sample standard deviation are denoted by \bar{x} and s
- They are random variables, because their values vary according to the random sample that has been selected

Attendance Survey Question 8

21

• On a your index card:

- Please write down your name and section number
- Today's Question: