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Preview & Administrative Notes
2

• 10 Estimation

– 10.1 Concepts of Estimation

• Next online homework due next Sat

• Suggested Reading

– Study Tools Chapter 10.1, 10.2

– OR: Sections 10.1, 10.2 in the textbook

• Suggested problems from the textbook:

10.1, 10.2, 10.6, 10.10, 10.12, 10.14, 10.16

10.41, 10.42, 10.51, 12.54, 12.55, 12.58, 12.65

•  Exam 2 next Tueday (7 April)



Le Menu
• 10 Estimation

– 10.1 Concepts of Estimation

– 10.2 Estimating the Population Mean

– 10.3 Selecting the Sample Size

– (12.3) Confidence Interval for a 
Proportion
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Confidence Intervals
4

• A large-sample 95% confidence interval for the

population mean is

where     is the sample mean and

σ = population standard deviation

1.96  X
n

σ
±

X



Confidence Intervals—Interpretation
5

• “Probability” means that “in the long run, 95% of 
these intervals would contain the parameter”

• If we repeatedly took random samples using the same 
method, then, in the long run, in 95% of the cases, 
the confidence interval will cover (include) the true 
unknown parameter

• For one given sample, we do not know whether the 
confidence interval covers the true parameter

• The 95% probability only refers to the method
that we use, but not to the individual sample



Confidence Intervals—Interpretation
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Confidence Intervals—Interpretation
7

• To avoid misleading use of the word “probability”, we 
say:

“We are 95% confident that the true

population mean is in this interval”

• Wrong statement:

“With 95% probability, the population

mean is in the interval from 3.5 to 5.2”



Confidence Intervals
8

• If we change the confidence coefficient from 0.95 to 0.99 
(or .90, or .98, or …), the confidence interval changes

• Increasing the probability that the interval contains the 
true parameter requires increasing the length of the 
interval

• In order to achieve 100% probability to cover the true 
parameter, we would have to take the whole range of 
possible parameter values, but that would not be 
informative

• There is a tradeoff between precision and coverage 
probability

• More coverage probability = less precision



Example
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• Find and interpret the 95% confidence interval for 
the population mean, if the sample mean is 70 and 
the sample standard deviation is 10, based on a 
sample of size

1. n = 25

2. n = 100



Confidence Intervals
10

• In general, a large sample confidence interval for the 
mean μ has the form

• Where z is chosen such that the probability under a 
normal curve within z standard deviations equals the 
confidence coefficient

,X z X z
n n

σ σ⎡ ⎤− +⎢ ⎥⎣ ⎦



Different Confidence Coefficients
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• We can use Table B3 to construct confidence 
intervals for other confidence coefficients

• For example, there is 99% probability that a normal 
distribution is within 2.575 standard deviations of 
the mean

(z = 2.575, tail probability = 0.005)

• A 99% confidence interval for μ is

2.575 , 2.575X X
n n

σ σ⎡ ⎤− +⎢ ⎥⎣ ⎦



Error Probability
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• The error probability (α) is the probability that a 
confidence interval does not contain the population 
parameter

• For a 95% confidence interval, the error probability
α =0.05

• α = 1 – confidence coefficient, or
• confidence coefficient = 1 – α
• The error probability is the probability that the sample 

mean      falls more than z standard errors from μ (in both 
directions)

• The confidence interval uses the z-value corresponding to 
a one-sided tail probability of α/2

X



Different Confidence Coefficients
13

Confidence
Coefficient

α α/2 zα/2

.90 .10

.95 1.96

.98

.99 2.58

3.00



Facts about Confidence Intervals
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• The width of a confidence interval

– ________  as the confidence coefficient increases

– ________  as the error probability decreases

– ________ as the standard error increases

– ________ as the sample size increases



Facts about Confidence Intervals II
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• If you calculate a 95% confidence interval, say from 
10 to 14, there is no probability associated with 
the true unknown parameter being in the 
interval or not

• The true parameter is either in the interval from 10 to 
14, or not – we just don’t know it

• The 95% refers to the method: If you repeatedly 
calculate confidence intervals with the same method, 
then 95% of them will contain the true parameter



Choice of Sample Size
16

• So far, we have calculated confidence intervals starting 
with z, s, n:

• These three numbers determine the margin of error of the 
confidence interval:

• What if we reverse the equation:  we specify a desired 
precision B (bound on the margin of error)???

• Given z and , we can find the minimal sample size 
needed for this precision

X z
n

σ
±

z
n

σ

σ



Choice of Sample Size
17

• We start with the version of the margin of error that 
includes the population standard deviation, σ, 
setting that equal to B:

•  We then solve this for n:

, where          means “round up”. 

n
zB σ

=

⎥
⎥

⎤
⎢
⎢

⎡
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⎠

⎞
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⎝

⎛
= 2

2
2

B
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Example
18

• For a random sample of 100 UK employees, the mean 
distance to work is 3.3 miles and the standard 
deviation is 2.0 miles.

• Find and interpret a 90% confidence interval for the 
mean residential distance from work of all UK 
employees.

• About how large a sample would have been adequate 
if we needed to estimate the mean to within 0.1, with 
90% confidence?
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