

THURSDAY, 24 SEPTEMBER 2009

Announcement

- Exam 1: September 30th at 5pm to 7pm. Location MEH, Memorial Auditoriam. The make-up will be at 7:30pm to 9:30pm at the 8th floor of POT. You have to let me know if you want to take the make up by the midnight of Sept 27th via email.
- Calculator will be allowed to use in the exam but no open book nor open notes (no cell phone nor computer as well).

Measures of Central Location

- Also called Central *Tendency*
- "What is a typical measurement in the sample/population?"
 - Mean: Arithmetic average
 - Median: Midpoint of the observations when they are arranged in increasing order
 - Mode: Most frequent value

4

- For skewed distributions, the median is often a more appropriate measure of central tendency than the mean
- The median usually better describes a "typical value" when the sample distribution is highly skewed
- Example:

Monthly income for five persons (n = 5)

- 1,000 2,000 3,000 4,000 100,000
- Median monthly income: 3000

Mean and Median

- Is there a compromise between the median and the mean? Yes!
- Trimmed mean:
 - 1. Order the data from smallest to largest
 - 2. Delete a selected number of values from each end of the ordered list
 - 3. Find the mean of the remaining values
- The trimming percentage is the percentage of values that have been deleted from each end of the ordered list.

Mode

- Mode of a data set is the most frequently occurring value
- Can speak of a data set being *unimodal*, *bimodal*, or *multimodal*
- Can be calculated on nominal (!) data
- On a histogram, where would the mode be?

Summary: Measures of Location

Mean- Arithmetic Average

Mean of a Sample - x Mean of a Population - μ

Median – Midpoint of the observations when they are arranged in increasing order Can be calculated on *quantitative* **or** ordinal data Can be calculated only on quantitative data

Notation: Subscripted variables n = # of units in the sample N = # of units in the population x = Variable to be measured $x_i =$ Measurement of the *ith* unit

Can be calculated on quantitative, ordinal, or nominal data!

Mode- Most frequent value.

Bimodal Distribution

Summarizing Data Numerically

- Center of the data
 - Mean
 - Median
 - Mode
- Dispersion of the data
 - Variance, Standard deviation
 - Interquartile range
 - Range

Mean vs. Median vs. Mode

- The mean is sensitive to outliers, median and mode are not
- In general, the median is more appropriate for skewed data than the mean
- In some situations, the median may be too insensitive to changes in the data
- The mode may not be unique

Mean vs. Median vs. Mode

- Mean: Interval data with an approximately symmetric distribution
- Median: Interval or ordinal data
- Mode: All types of data

Mean and Median

• Example: For towns with population size 2500 to 4599 in the U.S. Northeast in 1994, the mean salary of chiefs of police was \$37,527, and the median was \$30,500.

• Does this suggest that the distribution of salary was skewed to the left, symmetric, or skewed to the right?

Mean, Median, Mode—Another Example

14

Response	Frequency	Relative Frequency
every day	969	
a few ti <mark>mes a</mark> week	452	
once a week	261	
less than once a week	196	
Never	76	
TOTAL		

- Identify the mode
- Identify the median response

• Mean?

Attendance Survey Question #9

- On an index card
 - Please write down your name and section number
 - Today's Questions: