

Review: Graphical/Tabular Descriptive Statistics

- Summarize data
- Condense the information from the dataset
- Always useful: Frequency distribution
- Interval data: Histogram (Stem-and-Leaf?)
- Nominal/Ordinal data: Bar chart, Pie chart

Stem and Leaf Plot

- Write the observations ordered from smallest to largest
- Each observation is represented by a stem (leading digit(s)) and a leaf (final digit)
- Looks like a histogram sideways
- Contains more information than a histogram, because every single measurement can be recovered

Stem and Leaf Plot

4

- Useful for small data sets (<100 observations)
 Example of an *EDA*
- Practical problem:

What if the variable is measured on a continuous scale, with measurements like 1267.298, 1987.208, 2098.089, 1199.082, 1328.208, 1299.365, 1480.731, etc.

 Use common sense when choosing "stem" and "leaf"

Stem-and-Leaf Example: Age at Death for									
Presidents									
(5)									
PRESIDENT	AGE	PRESIDENT	AGE	PRESIDENT	AGE				
Washington	67	Fillmore	- 74	Roosevelt	60				
Adams	90	Pierce	64	Taft	72				
Jefferson	83	Buchanan	77	Wilson	67				
Madison	85	Lincoln	56	Harding	57				
Monroe	73	Johnson	66	Coolidge	60				
Adams	80	Grant	63	Hoover	90				
Jackson	78	Hayes	70	Roosevelt	63				
Van Buren	79	Garfield	49	Truman	88				
Harrison	68	Arthur	56	Eisenhower	78				
Tyler	71	Cleveland	71	Kennedy	46				
Polk	53	Harrison	67	Johnson	64				
Taylor	65	McKinley	58	Nixon	81				
				Reagan	93				

Sample/Population Distribution

- Frequency distributions and histograms exist for the population as well as for the sample
- Population distribution vs. sample distribution
- As the sample size increases, the sample distribution looks more and more like the population distribution

Describing Distributions

• Center, spread (numbers later)

Symmetric distributions
Bell-shaped or U-shaped

Not symmetric distributions:
Left-skewed or right-skewed

Describing the Relationship Between Two Nominal (or Ordinal) Variables

Contingency Table

- Number of subjects observed at all the combinations of possible outcomes for the two variables
- Contingency tables are identified by their number of rows and columns
- A table with 2 rows and 3 columns is called a 2 x 3 table ("2 by 3")

2 x 2 Contingency Table: Example

- 327 commercial motor vehicle drivers who had accidents in Kentucky from 1998 to 2002
- Two variables:
 - wearing a seat belt (y/n)
 - accident fatal (y/n)

		Accident Fatal		
		Yes	No	
Seat Belt	Yes	30	212	242
	No	33	52	85
		63	264	327

2 x 2 Contingency Table: Example, cont'd.

- How can we compare fatality rates for the two groups?
- Relative frequencies or percentages within each row
- Two sets of relative frequencies (for *seatbelt=yes* and for *seatbelt=no*), called **row relative frequencies**
- If seat belt use and fatality of accident are related, then there will be differences in the row relative frequencies

Row relative frequencies

- Two variables:
 - wearing a seat belt (y/n)
 - accident fatal (y/n)

		Accident Fatal		
		Yes	No	
Seat Belt	Yes			100
	No			100
				100

Describing the Relationship Between Two Interval Variables

Scatter Diagram

- In applications where one variable depends to some degree on the other variables, we label the dependent variable *Y* and the independent variable *X*
- Example:
 - Years of education = *X*

Income = Y

• Each point in the scatter diagram corresponds to one observation

3.1 Good Graphics ...

- ... present large data sets concisely and coherently
- ... can replace a thousand words and still be clearly understood and comprehended
- ... encourage the viewer to compare two or more variables
- ... do not replace substance by form
- ... do not distort what the data reveal
- ... have a high "data-to-ink" ratio

3.2 Bad Graphics...

- ...don't have a scale on the axis
- ...have a misleading caption
- ...distort by stretching/shrinking the vertical or horizontal axis
- ...use histograms or bar charts with bars of unequal width
- ...are more confusing than helpful

Attendance Survey Question #5

- On an index card
 - Please write down your name and section number
 - Today's Question: