STA 291 Fall 2009

1

LECTURE 29
TUESDAY, December 8

Administrative Notes

- Special OH: Dec 11th Fri 1pm to 2pm, Dec 15th Tue 6pm to 7pm.
- The final will be at CB110 on Tue Dec 15th at 8:30pm to 10:30pm (make-up will be on Wed Dec 16th at 9:30am to 11:30am).
- Practice final is posted on the web as well as the old final.
- Suggested problems: 11.21 to 11.25

Review: Test for the Population Mean

	One-Sided Tests		Two-Sided Test
Null Hypothesis	H_0 : $\mu = \mu_0$		
Research Hypothesis	$H_1: \mu < \mu_{0 }$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
Test Statistic	$z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$		
<i>p</i> -value	$P(Z < z_{obs})$	$P(Z > z_{obs})$	$2 \cdot P(Z > \mid z_{obs} \mid)$

Large Sample Significance Test for a Population Proportion

	One-Sid	Two-Sided Test	
Null Hypothesis	$H_0: p = p_0$		
Research Hypothesis	$H_1: p < p_0$	$H_1: p > p_0$	$H_1: p \neq p_0$
Test Statistic	$z_{obs} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$		
<i>p</i> -value	$P(Z < z_{obs})$	$P(Z > z_{obs})$	$2 \cdot P(Z > z_{obs})$

Significance Test for a Proportion

Assumptions

- What type of data?
 - Qualitative
- Which sampling method has been used?
 - Random sampling
- What is the sample size?
 - $n \ge 20$ if is p_0 between 0.25 and 0.75
 - In general (rule of thumb): Choose n such that $n \ge 5/p_0$ and $n \ge 5/(1-p_0)$

Significance Test for a Proportion

Hypotheses

• Null hypothesis H_0 : $p = p_0$ where p_0 is a priori (beforehand) specified

 Alternative hypotheses can be one-sided or twosided

Again, two-sided is more common

Significance Test for a Proportion

7

$$z_{\text{obs}} = \frac{\text{value from the data - value from H}_0}{\text{standard error of the estimator used}}$$

$$= \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

P-Value

- Calculation is exactly the same as for the test for a mean
- Find one- or two-sided tail probabilities using Table
 Z

Example

- ullet Let $oldsymbol{p}$ denote the proportion of Kentuckians who think that government environmental regulations are too strict
- Test H_0 : p = 0.5 against a two-sided alternative using data from a telephone poll of 834 people in which 26.6% said regulations were too strict
 - 1. Calculate the test statistic
 - 2. Find the *p*-value and interpret
 - 3. Using alpha=0.01, can you determine whether a majority or minority think that environmental regulations are too strict, or is it plausible that $\mathbf{p} = 0.5$?
 - 4. Construct a 99% confidence interval. Explain the advantage of the confidence interval over the test.

Attendance Survey Question #29

9

• On a 4"x6" index card

- Please write down your name and section number
- Today's Question: