STA 291 Fall 2009

LECTURE 27 TUESDAY, 1 December

1

• This week's online homework due on the next Mon.

..... (2)

- Practice final is posted on the web as well as the old final.
- Suggested Reading
 - Study Tools or Textbook Chapter 11
- Suggested problems from the textbook: 11.1 – 11.6

Choice of Sample Size

3

• We start with the version of the margin of error that includes the population standard deviation, σ , setting that equal to *B*: $B = z \frac{\sigma}{\sqrt{n}}$

$$n = \left[\sigma^2\left(\frac{z^2}{B^2}\right)\right]$$
, where $\left[\right]$ means "round up".

Example

- For a random sample of 100 UK employees, the mean distance to work is 3.3 miles and the standard deviation is 2.0 miles.
- Find and interpret a 90% confidence interval for the mean residential distance from work of all UK employees.
- About how large a sample would have been adequate if we needed to estimate the mean to within 0.1, with 90% confidence?

Chapter 11 Hypothesis Testing

- Fact: it's easier to prove a parameter isn't equal to a particular value than it is to prove it is equal to a particular value
- Leads to a core notion of hypothesis testing: it's fundamentally a *proof by contradiction*: we set up the belief we wish to disprove as the **null** hypothesis (H₀) and the belief we wish to prove as our alternative hypothesis (H₁) (A.K.A. research hypothesis)

Analogy: Court trial

6

 In American court trials, jury is instructed to think of the defendant as innocent:

H₀: Defendant is innocent

• District attorney, police involved, plaintiff, etc., bring every shred evidence to bear, hoping to prove

H₁: Defendant is guilty

• Which hypothesis is correct?

• Does the jury make the right decision?

Back to statistics ...

- Two hypotheses: the null and the alternative
- Process begins with the assumption that the null is true
- We calculate a test statistic to determine if there is enough evidence to infer that the alternative is true

Two possible decisions:

- Conclude there is enough evidence to reject the null, and therefore accept the alternative.
- Conclude that there is not enough evidence to reject the null
- Two possible errors?

What about those errors?

Two possible errors:

- Type I error: Rejecting the null when we shouldn't have [P(Type I error) = α]
- Type II error: Not rejecting the null when we should have [P(Type II error) = β]

Suppose that the director of manufacturing at a clothing factory needs to determine whether a new machine is producing a particular type of cloth according to the manufacturer's specifications, which indicate that the cloth should have a mean breaking strength of 70 pounds and a standard deviation of 3.5 pounds. A sample of 49 pieces reveals a sample mean of 69.1 pounds.

n

"True?" μ

r

Here,

H₀: $\mu = 70$ (what the manufacturer claims) H₁: $\mu \neq 70$ (our "confrontational" viewpoint)

Other types of alternatives: $H_1: \mu > 70$ $H_1: \mu < 70$

Hypothesis Testing

Everything after this—calculation of the test statistic, rejection regions, α, level of significance, *p*-value, conclusions, etc.—is just a further quantification of the difference between the value of the test statistic and the value from the null hypothesis.

Suppose that the director of manufacturing at a clothing factory needs to determine whether a new machine is producing a particular type of cloth according to the manufacturer's specifications, which indicate that the cloth should have a mean breaking strength of 70 pounds and a standard deviation of 3.5 pounds. A sample of 49 pieces reveals a sample mean of 69.1 pounds. Conduct an $\alpha = .05$ level test.

 $\Rightarrow z = \frac{69.1 - 70}{3.5/} = -1.80$

Hypothesis Testing

The *level of significance* is the maximum probability of incorrectly rejecting the null we're willing to accept—a typical value is $\alpha = 0.05$.

The **p**-*value of a test* is the probability of seeing a value of the test statistic at least as contradictory to the null as that we actually observed, if we assume the null is true.

• Here,

H₀: $\mu = 70$ (what the manufacturer claims) H₁: $\mu \neq 70$ (our "confrontational" viewpoint) Our test statistic:

$$z = \frac{69.1 - 70}{3.5 / \sqrt{49}} = -1.80$$

Giving a *p*-value of .0359 x 2 = .0718. Because this exceeds the significance level of α = .05, we don't reject, deciding there isn't enough evidence to reject the manufacturer's claim

Attendance Question #27

15

Write your name and section number on your index card.

Today's question: