STA 291 Fall 2009

LECTURE 22 TUESDAY, 10 November

Le Menn

 9 Sampling Distributions
9.1 Sampling Distribution of the Mean
9.5 Sampling Distribution of the Proportion
Including the *Central Limit Theorem* (CLT), the

most important result in statistics

• Homework Saturday at 11 p.m.

Going in Reverse, S'More

3

• What about "non-standard" normal probabilities? Forward process: $x \rightarrow z \rightarrow prob$ Reverse process: $prob \rightarrow z \rightarrow x$

• Example exercises: p. 249, #1 to #12

Typical Normal Distribution Questions

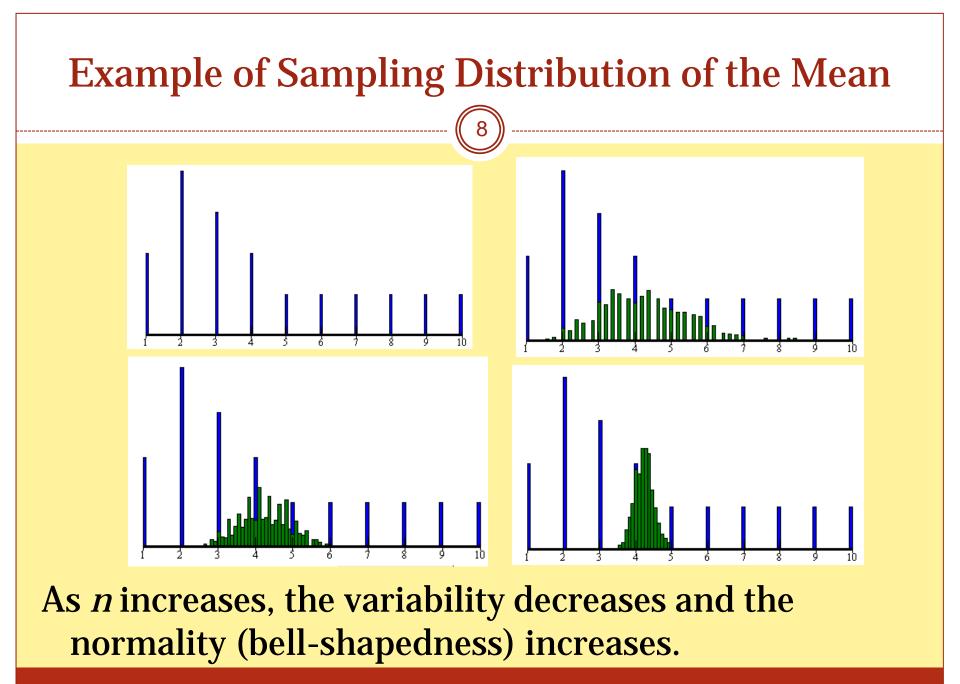
- One of the following three is given, and you are supposed to calculate one of the remaining
 - 1. Probability (right-hand, left-hand, two-sided, middle)
 - 2. *z*-score
 - 3. Observation
- In converting between 1 and 2, you need Table 3.
- In transforming between 2 and 3, you need the mean and standard deviation

Chapter 9 Points to Ponder

- *Suggested Reading* Sections 9.1 to 9.5 in the textbook
- Suggested problems from the textbook: 9.1 – 9.14,

Chapter 9: Sampling Distributions

Population with mean μ and standard deviation σ If you repeatedly take random samples and calculate the sample mean each time, the distribution of the sample mean follows a pattern This pattern is the sampling distribution


Properties of the Sampling Distribution

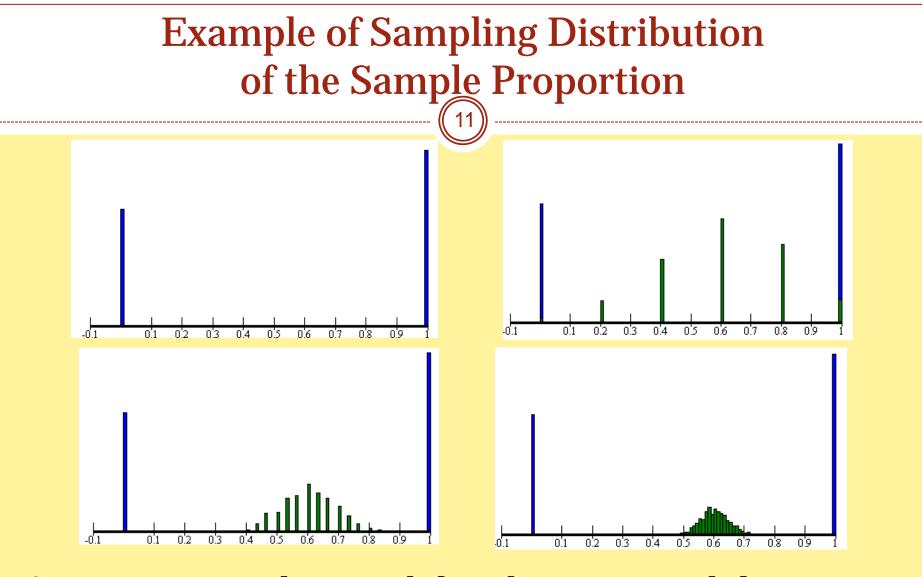
- Expected Value of the \overline{X} 's: μ .
- Standard deviation of the \overline{X} 's: $\frac{\sigma}{\sqrt{n}}$

also called the *standard error* of X

• (Biggie) Central Limit Theorem: As the sample size increases, the distribution of the \overline{X} 's gets closer and closer to the normal.

Sampling Distribution: Part Deux

Binomial Population with proportion *p* of successes • If you repeatedly take random samples and calculate the sample proportion each time, the distribution of the sample proportion follows a pattern


Properties of the Sampling Distribution

- Expected Value of the \hat{p} 's: p.
- Standard deviation of the \hat{p} 's: $\sqrt{\frac{p(1-p)}{n}}$

also called the $\mathit{standard} \mathit{error} \, \mathrm{of} \, \hat{p}$

• (Biggie) Central Limit Theorem: As the sample size increases, the distribution of the \hat{p} 's gets closer and closer to the normal.

Consequences...

As *n* increases, the variability decreases and the normality (bell-shapedness) increases.

Central Limit Theorem

Thanks to the CLT ...

• We know $\frac{\overline{X} - \mu}{\sigma/r}$ is approximately

standard normal (for sufficiently large *n*, even if the original distribution is discrete, or skewed).

• Ditto
$$\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Attendance Question #22

13

Write your name and section number on your index card.

Today's question: