STA 291 Fall 2009

LECTURE 17 THURSDAY, 22 OCTOBER

1

2

- 5 Probability (Review, mostly)
- 21 Random Variables and Discrete Probability Distributions

Suggested problems

3

• Suggested problems from the textbook: 21.1 to 21.4,21.7, 21.8, 21.10, and 21.11

Conditional Probability & the Multiplication Rule

$$P(A | B) = \frac{P(A \cap B)}{P(B)}, \text{ provided } P(B) \neq 0$$

- Note: *P*(*A*/*B*) is read as "the probability that *A* occurs given that *B* has occurred."
- Multiplied out, this gives *the multiplication rule:*

$$P(A \cap B) = P(B) \times P(A \mid B)$$

Multiplication Rule Example

• The multiplication rule:

$$P(A \cap B) = P(B) \times P(A \mid B)$$

• Ex.: A disease which occurs in .001 of the population is tested using a method with a false-positive rate of .05 and a false-negative rate of .05. If someone is selected and tested at random, what is the probability they are positive, and the method shows it?

- If events *A* and *B* are independent, then the events *A* and *B* have no influence on each other.
- So, the probability of *A* is unaffected by whether *B* has occurred.
- Mathematically, if *A* is independent of *B*, we write: P(A|B) = P(A)

Multiplication Rule and Independent Events

Multiplication Rule for Independent Events: Let A and B be two independent events, then

_____ ((7

 $P(A \cap B) = P(A)P(B).$

Examples:

- Flip a coin twice. What is the probability of observing two heads?
- Flip a coin twice. What is the probability of getting a head and then a tail? A tail and then a head? One head?
- Three computers are ordered. If the probability of getting a "working" computer is 0.7, what is the probability that all three are "working"?

Conditional Probabilities—Another Perspective

8

Example: Smoking and Lung Disease I

Joint Probabilities	Lung Disease	Not Lung Disease	Row Totals
Smoker	.12	.19	.31
Nonsmoker	.03	.66	.69
Column Totals	.15	.85	1.00

Conditional Probabilities—Another Perspective

9

Example: Smoking and Lung Disease I

Example: Smoking and Lung Disease II

Joint Probabilities	Lung Disease	Not Lung Disease	Row Totals	Condit Roy Probab
Smoker	.12	.19	.31	Smol
Nonsmoker	.03	.66	.69	Nonsm
Column Totals	.15	.85	1.00	Smoker Nonsm

Conditional Row Probabilities	Lung Disease	Not Lung Disease	Row Totals
Smoker	.12/.31	.19/.31	.31/.31
	=.39	=.61	=1.00
Nonsmoker	.03/.69	.66/.69	.69/.69
	=.04	=.96	=1.00
Smokers and Nonsmokers	.15	.85	1.00

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Conditional Probabilities—Another Perspective

10

Example: Smoking and Lung Disease I

Example: Smoking and Lung Disease III

Joint Probabilities	Lung Disease	Not Lung Disease	Row Totals
Smoker	.12	.19	.31
Nonsmoker	.03	.66	.69
Column Totals	.15	.85	1.00

Conditional Column Probabilities	Lung Disease	Not Lung Disease	Lung Disease and Not Lung Disease
Smoker	.12/.15 =.80	.19/.85 =.22	.31
Nonsmoker	.03/.15 =.20	.66/.85 =.78	.69
Column Totals	.15/.15 =1.00	.85/.85 =1.00	1.00

Terminology

- *P*(*A* ∩ *B*) = *P*(*A*,*B*) joint probability of *A* and *B* (of the intersection of *A* and *B*)
- P(A|B) conditional probability of A given B
- *P*(*A*) marginal probability of *A*

Chapter 21: Random Variables

(12)

- A variable *X* is a **random variable** if the value that *X* assumes at the conclusion of an experiment cannot be predicted with certainty in advance.
- There are two types of random variables:

...)

- Discrete: the random variable can only assume a finite or countably infinite number of different values (almost always a count)
- Continuous: the random variable can assume all the values in some interval (almost always a physical measure, like distance, time, area, volume, weight,

Examples

13

Which of the following random variables are discrete and which are continuous?

- a. *X* = Number of houses sold by real estate developer per week?
- b. *X* = Number of heads in ten tosses of a coin?
- c. *X* = Weight of a child at birth?
- d. *X* = Time required to run a marathon?

Properties of Discrete Probability Distributions

Definition: A Discrete probability distribution is just a list of the possible values of a r.v. *X*, say (x_i) and the probability associated with each $P(X=x_i)$.

Properties:

1.All probabilities non-negative.

2.Probabilities sum to _

 $P(x_i) \ge 0$ $\sum P(x_i) = 1$

Example

The table below gives the # of days of sick leave for 200 employees in a year.

Days	0	1	2	3	4	5	6	7
Number of Employees	20	40	40	30	20	10	10	30

An employee is to be selected at random and let X = # days of sick leave.

a.) Construct and graph the probability distribution of *X*b.) Find *P* (*X* ≤ 3)
c.) Find *P* (*X* > 3)
d.) Find *P* (3 ≤ *X* ≤ 6)

Population Distribution vs. Probability Distribution

• If you select a subject randomly from the population, then the probability distribution for the value of the random variable *X* is the relative frequency (population, if you have it, but usually approximated by the sample version) of that value

Cumulative Distribution Function

Definition: The *cumulative distribution function*, or *CDF* is

$$F(x) = P(X \le x).$$

Motivation: Some parts of the previous example would have been easier with this tool.

----- ((17)

Properties:

- 1. For any value *x*, $0 \le F(x) \le 1$.
- 2. If $x_1 < x_2$, then $F(x_1) \le F(x_2)$
- 3. $F(-\infty) = 0$ and $F(\infty) = 1$.

18

Let *X* have the following probability distribution:

X	2	4	6	8	10
P (x)	.05	.20	.35	.30	.10

a.) Find $P(X \le 6)$

b.) Graph the cumulative probability distribution of *X*c.) Find *P* (*X* > 6)

Attendance Question #17

19

Write your name and section number on your index card.

Today's question: