STA291 Fall 2009

LECTURE 12 Tuesday, 6 October

Five-Number Summary (Review)

- 2
- Maximum, Upper Quartile, Median, Lower Quartile, Minimum
- Statistical Software SAS output (Murder Rate Data)

Quantile	Estimate	
100% Max 75% Q3 50% Median 25% Q1	20.30 10.30 6.70 3.90	Note the distance from the median to the maximum compared to the median to the
0% Min	1.60	minimum.

Interquartile Range

- The Interquartile Range (IQR) is the difference between upper and lower quartile
- $IQR = Q_3 Q_1$
- IQR= Range of values that contains the middle 50% of the data
- IQR increases as variability increases

Box Plot (AKA Box-and-Whiskers Plot)

- A box plot is basically a graphical version of the fivenumber summary (unless there are outliers)
- It consists of a **box** that contains the central 50% of the distribution (from lower quartile to upper quartile),
- A *line* within the box that marks the median,
- And *whiskers* that extend to the maximum and minimum values, unless there are outliers

Outliers

- An observation is an outlier if it falls
 - more than 1.5 IQR above the upper quartile or
 - more than 1.5 IQR below the lower quartile
- Example: Murder Rate Data w/o DC
 - upper quartile Q3 = 10.3
 - -IQR = 6.4
 - -Q3 + 1.5 IQR =_____
 - Any outliers?

Illustrating Boxplot with Murder Rate Data

• (w/o DC—key: 20|3 = 20.3)

		Stem Leaf	#
		20 3	1
Quantile 100% Max 75% Q3	Estimate 20.30 10.30	19 18 17 16 15	
50% Median	6.70	13 135	3
25% Q1	3.90	12 7	1
-		11 334469	6
0% Min	1.60	10 2234	4
		9 08	2
		8 03469	5
		7 5	1
		6 034689	6
		5 0238	4
		4 46	2
		3 0144468999	10
		2 039	3
		1 67	2
		+	

Measures of Variation

- Mean and Median only describe a typical value, but not the spread of the data
- Two distributions may have the same mean, but different variability
- Statistics that describe variability are called measures of variation (or dispersion)

Sample Measures of Variation

- 8
- Sample Range:

 Difference between maximum and mini-

Difference between maximum and minimum sample value $\sum (x - \overline{x})^2$

- Sample Variance: $s^2 = \frac{\sum (x_i \overline{x})^2}{n-1}$
- Sample Standard Deviation: $s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i \overline{x})^2}{n-1}}$
- Sample Interquartile Range: Difference between upper and lower quartile of the sample

Population Measures of Variation

9

Population Range:

Difference between maximum and minimum population values $\sum (x - \mu)^2$

- Population Variance: $\sigma^2 = \frac{\sum (x_i \mu)^2}{N}$
- Population Standard Deviation: $\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i \mu)^2}{N}}$
- Population Interquartile Range:

 Difference between upper and lower quartile of the population

Range

- Range: Difference between the largest and smallest observation
- Very much affected by outliers (one misreported observation may lead to an outlier, and affect the range)
- The range does not always reveal different variation about the mean

Deviations

- The deviation of the i^{th} observation, x_i , from the sample mean, \bar{x} , is $x_i \bar{x}$, the difference between them
- The sum of all deviations is zero because the sample mean is the center of gravity of the data (remember the balance beam?)
- Therefore, people use either the sum of the absolute deviations or the sum of the squared deviations as a measure of variation

Sample Variance

(12)

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$$

The *variance* of *n* observations is the sum of the squared deviations, divided by n-1.

Variance: Interpretation

- The variance is about the average of the squared deviations
 - "average squared distance from the mean"
- Unit: square of the unit for the original data
- Difficult to interpret
- Solution: Take the square root of the variance, and the unit is the same as for the original data

Sample standard deviation

14

• The standard deviation *s* is the positive square root of the variance

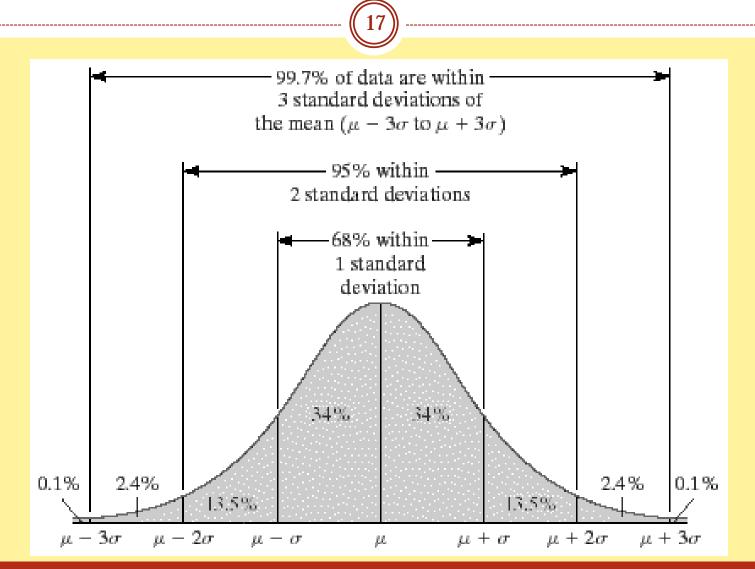
$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Standard Deviation: Properties

15

• $s \ge 0$ always

• s = o only when all observations are the same


• If data is collected for the whole population instead of a sample, then n-1 is replaced by n

• s is sensitive to outliers

Standard Deviation Interpretation: Empirical Rule

- **16**
- If the histogram of the data is approximately symmetric and bell-shaped, then
 - About 68% of the data are within one standard deviation from the mean
 - About 95% of the data are within two standard deviations from the mean
 - About 99.7% of the data are within three standard deviations from the mean

Standard Deviation Interpretation: Empirical Rule

Sample Statistics, Population Parameters

- Population mean and population standard deviation are denoted by the Greek letters μ (mu) and σ (sigma)
- They are unknown constants that we would like to estimate
- Sample mean and sample standard deviation are denoted by \bar{x} and s
- They are random variables, because their values vary according to the random sample that has been selected

Attendance Survey Question 12

(19)

• On a your index card:

- Please write down your name and section number
- Today's Question: