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1 Geodesics in Global NPC Orthant Spaces

Definition 1.1 (Path/Path Length/Geodesic)
Suppose T is a metric space with the metric d. For any D1, D2 ∈ T , if there exists a
continuous map γ : [0, 1] → T such that γ(0) = D1 and γ(1) = D2, then γ([0, 1]) is said
to be a path between D1 and D2. For any path γ([0, 1]), the path length is defined as the
supermum of the set

{
k−1∑
i=0

d(γ(xi), γ(xi+1))|0 ≤ x0 ≤ · · · ≤ xk ≤ 1}.

A path between two points is said to be a geodesic if the path length is the infimum among
all the paths between the two points.

Definition 1.2 (Geodesic Space)
Suppose T is a metric space with the metric d. T is said to be a geodesic space if for any
D1, D2 ∈ T , d(D1, D2) is the path length of geodesic between D1 and D2.

Definition 1.3 (Global NPC/CAT(0))
Suppose T is a geodesic space with the metric d. Consider a triangle T in T of side lengths
a, b, c, and build a comparison triangle T ′ with the same lengths in Euclidean plane. Con-
sider a chord of length l in T which connects two points on the boundary of T ; there is a
corresponding comparison chord in T ′, say of length l′. If for every triangle T in T and every
chord in T we have l ≤ l′, T is said to be global nonpositively curved (NPC) or CAT(0).

Lemma 1.4 (Lemma 6.2 in [9])
In a global NPC space, the geodesic between any two points is unique.

Notation 1.5
For any two points D1 and D2 in a global NPC space, we denote the geodesic between D1

and D2 by G(D1, D2).

In our context, we assume every convex hull/simplex/simplicial complex is defined in a
normed affine space.
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Notation 1.6
For any finite set σ, conv(σ) denotes the convex hull of σ, particularly, for any two points
σ1 and σ2, conv({σ1, σ2}) is denoted by [σ1, σ2]. For any simplex/complex Ω, ver(Ω) denotes
the set of vertices of Ω.

Definition 1.7 (Orthant/Orthant Space)
Suppose Ω is a simplicial complex. For any cell F of Ω, the set

{
∑

β∈ver(F )

lβeβ|lβ ∈ R≥0}

is said to be an orthant w.r.t F , denoted by O(F ). For any simplicial complex Ω, the union⋃
all cells F∈Ω

O(F ) is said to be an orthant space w.r.t Ω, denoted by O(Ω).

It is pointed out in [9] (Page 38, the third paragraph) that any orthant space is a geodesic
space. That means any orthant space is a metric space and the distance between any two
points is defined by the path length of geodesic. However, we need extra condition on Ω
such that O(Ω) is global NPC. See Definition 2.8 and Lemma 2.9.

Definition 1.8 (Flag Complex)
A simplicial complex Ω is said to be a flag complex if for any σ ⊂ ver(Ω), if [σ1, σ2] ∈ Ω for
any σ1, σ2 ∈ σ, then conv(σ) ∈ Ω.

Lemma 1.9 (Proposition 6.14 in [9])
An orthant space O(Ω) is global NPC if and only if Ω is a flag complex.

We review the main idea of Geodesic Treepath Problem (GTP) algorithm [11] for com-
puting geodesics in BHV space, which can be naturally extended to any global NPC orthant
space (see [9, Corollary 6.19]).

Definition 1.10 (Leg/Projection/Projection Norm)
Suppose F is a simplex. For any D ∈ O(F ), suppose D =

∑
σ∈ver(F )

lσeσ. For each σ ∈ ver(F ),

lσ is said to be the leg of D w.r.t. σ. For any A ⊂ ver(F ),
∑
σ∈A

lσeσ and
√∑

σ∈A
l2σ are said to

be the projection and projection norm of D w.r.t. A, noted by DA and ||DA||, respectively.

Given an n-dimensional flag complex Ω and two points D(σ), D(τ) ∈ O(Ω), without loss
of generality, assume that D(σ) ∈ O(Fσ) and D(τ) ∈ O(Fτ ) where Fσ and Fτ are two cells of
Ω with vertex sets σ = {σ1, . . . , σn+1} and τ = {τ1, . . . , τn+1} (σ ∩ τ = ∅). G(D(σ), D(τ)) is
determined by ordered partitions A = (A1, . . . , Aq) and B = (B1, . . . , Bq) of σ and τ , which
satisfy three properties:

(P1) for each i > j, conv(Ai ∪Bj) ∈ Ω

(P2)
||D(σ)

A1
||

||D(τ)
B1
||
≤
||D(σ)

A2
||

||D(τ)
B2
||
≤ · · · ≤

||D(σ)
Aq
||

||D(τ)
Bq
||
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(P3) for i = 1, . . . , q, there do not exist nontrivial partitions L1∪L2 of Ai and R1∪R2

of Bi such that conv(L2 ∪R1) ∈ Ω and
||D(σ)

L1
||

||D(τ)
R1
||
<
||D(σ)

L2
||

||D(τ)
R2
||
.

Furthermore, G(D(σ), D(τ)) is 1-complex made of q+ 1 line segments living in q+ 1 different
orthants determined by A and B. See Lemma 2.11 below.

Lemma 1.11

G(D(σ), D(τ)) =
q⋃
i=0

[Di, Di+1] where

• D0 = D(σ) and Dq+1 = D(τ)

• for any i (0 ≤ i ≤ q), [Di, Di+1] ⊂ O(Fi)

where again Fi = conv((σ\ ∪ik=1 Ak) ∪ (∪ik=1Bk)) for i = 0, . . . , q.

Definition 1.12 (Transition/Codimension/Depth)
F0, . . . , Fq stated in Lemma 2.11 are said to be the transitions w.r.t G(D(σ), D(τ)). For

i = 0, . . . , q, the number
i∑

k=1

(|Ak| − |Bk|) is said to be the codimension of Fi. The maximum

codimension of the transitions is said to be the depth of G(D(σ), D(τ)).

Based on these facts above, computing G(D(σ), D(τ)) is actually to compute the ordered
partitions A and B and the “bent” points D1, . . . , Dq living on the boundaries of transitions.
The sketch of GTP algorithm is given below.

Algorithm 1.13 (Pseudo algorithm on computing geodesics in O(Ω))
Input: D(σ) and D(τ)

Output: G(D(σ), D(τ))

1. Initialize A(0) = {σ}, B(0) = {τ}.
2. Note for each k (k ≥ 0), (P1) and (P2) always hold for A(k) and B(k). Check whether

(P3) holds.

(a) If no, then split some elements Ai and Bi in A(k) and B(k) respectively, and re-
index the new partitions to get A(k+1) and B(k+1). Go to Step 2.

(b) If yes, then we are done.

Remark 1.14
We have several remarks on GTP algorithm below.

(1) Recall that we have assumed σ ∩ τ = ∅. If this hypothesis is not satisfied then an
easy modification of the above construction yields the geodesic as well. See the GTP
algorithm with common edges in [11, page 18] for more details.
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(2) If there exists i (1 ≤ i ≤ q − 1) such that
||D(σ)

Ai
||

||D(τ)
Bi
||

=
||D(σ)

Ai+1
||

||D(τ)
Bi+1

||
, {A1, . . . , Ai ∪

Ai+1, . . . , Aq} and {B1, . . . , Bi ∪ Bi+1, . . . , Bq} are also ordered partitions of σ and
τ w.r.t. G(D(σ), D(τ)). So every “≤” in (P2) can be replaced with “<”.

(3) If there exists i (1 ≤ i ≤ q) such that ||D(σ)
Aj
|| = 0 or ||D(τ)

Bj
|| = 0, we consider Aj and

Bj as the common set of σ and τ . So we can assume each
||D(σ)

Ai
||

||D(τ)
Bi
||

in (P2) is a positive

number.

Example 1.15 (Geodesics in 9-Space)

Experiment 1.16 (Geodesics in BHV Tree Space)
BHV tree space is another typical global NPC orthant space. In BHV tree space, depth is
regarded as a quality measure for geodesics: the smaller the depth the better the geodesic.
Optimal geodesics have depth 0. Such geodesics are line segments within a single orthant.
These occur if and only if the starting point and target point are in the same orthant.
Generally, the two given points are not in the same orthant. In this case, the best-case
scenario is depth 1, meaning that each transition has codimension 1. On the other extreme
are the geodesics of depth n − 2. These are the cone paths: they occur when A and B are
singletons. Cone paths are bad from a statistical perspective because the give rise to sticky
means, see e.g. [8] or [9, §5.3]. Fix the number n of taxa between 4 and 20. For each such

n, we sampled 1000 random pairs
{
D(σ), D(τ)

}
from tree space U [1]

n , and we computed their
geodesic. The depths of these geodesics are integers between 0 and n − 2. Table 1 shows
their distribution.

n\depth 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
4 8.4 58.4 33.2
5 1.6 26.4 47.4 24.6
6 0.2 13.2 36.7 31.5 18.4
7 0 4 25.9 29.9 22.2 18
8 0 1.1 15 28.9 25 17.1 12.9
9 0 0.8 8 22.1 25.9 18.3 14.5 10.4
10 0 0.4 3.3 17.2 22.3 20.6 14.1 13.2 8.9
11 0 0.2 1.5 10.4 17.6 20.3 16.8 12.8 11.1 9.3
12 0 0.2 0.1 6 14.1 20.4 13.9 14.6 12.7 10.5 7.5
13 0 0.2 0.4 4.2 10.1 17.2 15.9 12.5 11 9.8 9.1 9.6
14 0 0.2 0 2.7 9.3 14.9 15.5 12.2 11.3 10.4 8.7 8 6.8
15 0 0.1 0 1.4 5.9 12.7 13 13.1 11.3 9.2 8.9 8.5 7.5 8.4
16 0 0 0 1 5 11.2 11.4 11.3 11.2 9.9 8.1 9.1 7.3 6.7 7.8
17 0 0 0 0.2 3.4 5.9 10.7 11 11.2 11.5 8.4 7.9 7.9 6.2 8.5 7.2
18 0 0 0.1 0.4 1.5 6.5 8.7 10.5 10.9 9.7 7.9 7.5 7.1 8.7 7.7 6.5 6.3
19 0 0 0 0.2 1.6 5 7.2 9.3 9.6 8.5 7.5 8.3 7.4 6.1 9.2 7.4 6.8 5.9
20 0 0 0 0 0.5 3 6.7 7.6 11.2 9.8 9.4 8.2 5.9 7.5 6.9 6.9 4.5 5.7 6.2

Table 1: The rows are labeled by the number n of taxa and the columns are labeled by
the possible depths of a geodesic in tree space. The entries in each row sum to 100%. They
are the frequencies of the depths among 1000 geodesics, randomly sampled using Algorithm
2.17.

For instance, the first row concerns 1000 random geodesics on the BHV surface U [1]
4 . Of

these geodesics, 8.4% were in a single triangle or quadrangle, 58.4% had depth 1, and 33.2%
were cone paths. For n = 20, the fraction of cone paths equals 6.2%.
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The data in Table 1 depend on the specific probability distribution on U [1]
n that was used

for the sampling. In our experiment the sampling was done using the method described in
Algorithm 2.17.

Algorithm 1.17 (Generating a sample of random normalized equidistant trees of n leaves)
Input: The number n of leaves, and the sample size N .
Output: A sample of N random normalized equidistant trees in the tree space U [1]

n .

1. Set S = ∅.
2. For i = 1, . . . N , do

(a) Generate a tree Di using the function rcoal from the ape package [13] in R.

(b) Randomly permute the leaf labels on the metric tree Di.

(c) Change the clade nested structure of Di by randomly applying the nearest neighbor
interchange (NNI) operation n times.

(d) Turn Di into an equidistant tree using the function compute.brtime in ape.

(e) Normalize Ui so that the distance from the root to each leaf is 1/2.

(f) Add Di to the output set S.

3. Return S.

We conclude our exposition on global NPC orthant space by mentioning one concrete
scenario for how it used in statistical phylogenetics. This is the work of Nye [10] on principal
component analysis. Nye works in the usual non-compact BHV space of non-equidistant
trees. Our aim here is to just convey the basic geometric ideas.

Nye [10] defines a line L in BHV tree space to be an unbounded path such that every
bounded subpath is the geodesic between its endpoints. Suppose that L is such a line, and x
any tree metric that is not in L. Proposition 2.1 in [10] shows that L contains a unique point
y that is closest to x in the BHV metric. We call y the projection of x onto the line L. Given
x and L, it can be computed as follows. Fixing a base point L(0) on the line, one choses a
geodesic parametrization L(t) of the line. This means that t is the distance d(L(0), L(t)).
Also let r denote the distance from x to L(0). By the triangle inequality, the desired point
is y = L(t∗) for some t∗ ∈ [−r, r]. The distance d(x, L(t)) is a continuous function of t. Our
task is to find the minimum t∗ of that function on the closed interval [−r, r]. This is done
easily using numerical methods. The uniqueness of t∗ follows from the CAT(0) property.

Suppose we are given a collection {x1, x2, . . . , xN} of tree metrics on n taxa. This is our
data set for phylogenetic analysis. Nye’s method computes a first principal line (regression
line) for these data inside the BHV space. This is done as follows. One first computes the
centroid x0 of the N given trees. This can be done using the iterative method in [2, Theorem
4.1]. Now, the desired regression line L is one of lines through x0. For any such line L, we
can compute the projections y1, . . . , yn of the data points x1, . . . , xn. The goal is now to find
the line L that minimizes a certain objective function. Nye proposes two such functions:

f‖(L) :=
N∑
i=1

d(x0, yi)
2 or f⊥(L) :=

N∑
i=1

d(xi, yi)
2.
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This function of L is minimized using an iterative numerical procedure.
While the paper [10] represents a milestone concerning statistical inference in BHV tree

space, it left open the problem of computing higher-dimensional principal components. First,
what are the geodesic planes? Which of them is the regression plane for x1, x2, . . . , xN?
Ideally, a plane in tree space would be a 2-dimensional subcomplex that contains the geodesic
triangle formed by any three of its points. Outside a single cone, do such planes even exist?
Such questions were raised in [10, §6]. The answer requires a convexity theory in global NPC
orthant spaces.

2 Convexity in Global NPC Orthant Spaces

In this section, we always assume that Ω is a flag complex.

Definition 2.1 (Geodesically Convex)
A subset T of O(Ω) is said to be geodesically convex if for any two points D1, D2 ∈ T ,
G(D1, D2) ⊂ T .

Definition 2.2 (“≤” in an orthant)

Suppose F is a cell of Ω and D1 =
∑

β∈ver(F )

l
(1)
β eβ, D2 =

∑
β∈ver(F )

l
(2)
β eβ ∈ O(F ). If for any

β ∈ ver(F ), l
(1)
β ≤ l

(2)
β , then we say D1 ≤ D2.

Theorem 2.3
Let T ⊂ O(Ω). T is geodesically convex if

(1) for each orthant O(F ) ⊂ O(Ω), the set TF
∆
= T ∩ O(F ) is convex;

(2) each convex set TF is downward closed, i.e., if D1 ∈ O(F ), D2 ∈ TF and D1 ≤ D2,
then D1 ∈ TF .

Proof. For any D(σ) ∈ TFσ and D(τ) ∈ TFτ , where Fσ and Fτ are two faces of Ω with
vertex sets σ and τ , we have to show G(D(σ), D(τ)) ⊂ T . Assume that σ ∩ τ = α. Let
σ∗ = σ\α and τ ∗ = τ\α. Suppose the ordered partitions of σ∗ and τ ∗ w.r.t. G(D(σ), D(τ))
are A = {A1, . . . , Aq} and B = {B1, . . . , Bq}. By lemma 2.11, we know

G(D(σ), D(τ)) = [D(σ), D1] ∪ [D1, D2] ∪ · · · [Dq−1, Dq] ∪ [Dq, D
(τ)].

By the condition (1), we only need to prove that D1, . . . , Dq ∈ T . We prove the conclusion
by induction on q.

Suppose q = 1. By Definitions 2.10 and 3.2 and the condition (2), D
(σ)
α , D

(τ)
α ∈ T . By

the step (c) of GTP algorithm with common edges in [9, page 18], we see D1 ∈ [D
(σ)
α , D

(τ)
α ].

By the condition (1), we have D1 ∈ T .
Suppose the conclusion holds for q = m (m ≥ 1). Then we want to prove the conclusion

for q = m + 1. By Remark 2.14 (2–3), assume 0 <
||D(σ)

A1
||

||D(τ)
B1
||
<
||D(σ)

A2
||

||D(τ)
B2
||
. First, we show
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D1 ∈ T . More specifically, we show there exists D ∈ TFσ ∩ TF1 such that D1 ≤ D where
F1 = conv(B1∪A2∪· · ·Aq∪α). In fact, we calculate D1 according to the GTP algorithm [9].
Note D1 ∈ Fσ ∩ F1 = conv(A2 ∪ · · ·Aq ∪ α). So we only need to calculate D1Aj

(2 ≤ j ≤ q)

and D1α :

(i). for each j (2 ≤ j ≤ q), by (P2),

D1Aj
=

D
(σ)
Aj

||D(σ)
Aj
||

(
||D(τ)

B1
||||D(σ)

Aj
|| − ||D(σ)

A1
||||D(τ)

Bj
||

||D(σ)
A1
||+ ||D(τ)

B1
||

)
;

(ii).

D1α =
||D(τ)

B1
||

||D(σ)
A1
||+ ||D(τ)

B1
||
D(σ)
α +

||D(σ)
A1
||

||D(σ)
A1
||+ ||D(τ)

B1
||
D(τ)
α

Note also we have the facts below.

(iii). Since D(σ) ∈ TFσ , we have D
(σ)
σ\A1
∈ TFσ by the condition (2).

(vi). Since D(τ) ∈ TFτ , we have D
(τ)
α ∈ TFτ by the condition (2). Note α = σ ∩ τ . So

D
(τ)
α ∈ O(Fσ) and Hence D

(τ)
α ∈ TFσ .

Let t =
||D(τ)

B1
||

||D(σ)
A1
||+||D(τ)

B1
||
. By the facts (i–iv),

D1 = Σq
j=2D1Aj

+D1α

= Σq
j=2D

(σ)
Aj

(
t− (1− t)

||D(τ)
Bj
||

||D(σ)
Aj
||

)
+ tD(σ)

α + (1− t)D(τ)
α

≤ Σq
j=2tD

(σ)
Aj

+ tD(σ)
α + (1− t)D(τ)

α

= t
(

Σq
j=2D

(σ)
Aj

+D(σ)
α

)
+ (1− t)D(τ)

α

= tD
(σ)
σ\A1

+ (1− t)D(τ)
α

∈ TFσ ∩ TF1

The second “=” follows from (i–ii), the “≤” follows from the assumption ||D(σ)
A1
|| > 0 and the

“∈” follows from (iii–vi) and the condition (1). By Lemma 2.11, G(D1, D
(τ)) = [D1, D2] ∪

[D2, D3] ∪ · · · ∪ [Dq, D
(τ)]. By the induction hypothesis, we know D2, . . . , Dq ∈ T .

Definition 2.4 (Geodesic Convex Hull)
Let S = {D1, D2, . . . , Dk} be a finite set of points in O(Ω). The geodesic convex hull conv(S)
of S is the smallest geodesically convex set that contains S. If k = 3 then we call it a geodesic
triangle.
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Our main result in this section offers a decomposition of an arbitrary geodesic polytope
into a finite union of convex polytopes (in the usual sense) that fit together along faces.

Definition 2.5
Let S ⊂ O(Ω). The set g(S) is defined as⋃

D1,D2∈S

G(D1, D2).

For positive integer n ≥ 2, we define gn(S) recursively as gn(S) = g(gn−1(S)).

Lemma 2.6
Let S be a set of points in O(Ω). Then

conv(S) =
∞⋃
n=1

gn(S).

In other words, the geodesic convex hull of S is the set of all points in O(Ω) that can be
generated in finite steps from S by taking geodesic paths.

Proof. By Definition 3.4, if a set T ⊂ conv(S), then g(T ) ⊂ conv(S). Since S ⊂ conv(S),
by induction on n we can prove that gn(S) ⊂ conv(S) for all positive integers n. Then⋃∞
n=1 g

n(S) ⊂ conv(S). On the other hand, for any two points D1, D2 ∈
⋃∞
n=1 g

n(S), there
exist positive integers n1, n2 such that D1 ∈ gn1(S), D2 ∈ gn2(S). Then the geodesic path
G(D1, D2) ⊂ gmax(n1,n2)+1(S), so G(D1, D2) ⊂

⋃∞
n=1 g

n(S). Furthermore
⋃∞
n=1 g

n(S) contains
S, so it is the smallest set that satisfying the conditions in Definition 3.4, hence it equals to
conv(S).

Definition 2.7 (Geodesics between two sets of points)
Suppose in a global NPC orthant space A is a set of points within one orthant, and B is a
set of points within another orthant. Define

Geo(A,B) =
⋃

a∈A,b∈B

G(a, b).

The following proposition shows that locally the ”Geo” operation is not commutative
with taking (ordinary) convex hull.

Proposition 2.8
Suppose A,B are the same as in the above definition. If F is a cell of a global NPC orthant
space, then in general

conv(Geo(A,B) ∩ F ) 6= Geo(conv(A), conv(B)) ∩ F. (1)

The following example is an example to demonstrate (1).
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Example 2.9 (Geodesics in 5-Space)
Consider a flag complex with 5 vertices 1, 2, 3, 4, 5, where the maximal dimensional cliques
are {1, 2, 3}, {2, 3, 4} and {3, 4, 5}. Then the corresponding global NPC orthant space has 3
orthant with dimension 3. We use five coordinates to denote each point.

Now let A = {(1, 1, 1, 0, 0)}, B = {(0, 0, 1, 0, 1), (0, 0, 0, 1, 0)} and F is the quadrant of
axis 2, 3 (F = {(0, b, c, 0, 0)|b, c ≥ 0}). Then

Geo(A,B) ∩ F = {(0, 0, 1, 0, 0), (0,
1

2
,
1

2
, 0, 0)}

so conv(Geo(A,B) ∩ F ) is the line segment connecting the two points
(0, 0, 1, 0, 0), (0, 1

2
, 1

2
, 0, 0).

On the other hand, conv(A) = A and conv(B) = {(0, 0, t, 1 − t, t)|0 ≤ t ≤ 1}. In
particular (0, 0, 1

2
, 1

2
, 1

2
) ∈ conv(B). And note that G((1, 1, 1, 0, 0), (0, 0, 1

2
, 1

2
, 1

2
)) contains the

point (0, 0, 2
3
, 0, 0), which belongs to F . Then

(0, 0,
2

3
, 0, 0) ∈ Geo(conv(A), conv(B)) ∩ F.

But (0, 0, 2
3
, 0, 0) /∈ conv(Geo(A,B) ∩ F ), so this example proves the above proposition.

Lemma 2.10
Suppose G(D(σ), D(τ)) = [D(σ), D1]∪G(D1, D

(τ)) and [D(σ), D1] ⊂ O(F ) where D1 is defined
as that in Lemma 2.11. For any D ∈ O(F ), if D is on the line determined by D(σ) and D1,
then G(D,D(τ)) = [D,D1] ∪G(D1, D

(τ)).

Proof. Assume D = tDσ + (1 − t)D1. Remark that t ≥ 0 since D ∈ O(F ). But we don’t
require 1− t ≥ 0 since D may not be in the interval [D(σ), D1]. Assume that σ ∩ τ = α. Let
σ∗ = σ\α and τ ∗ = τ\α. Suppose the ordered partitions of σ∗ and τ ∗ w.r.t. G(D(σ), D(τ))
are A = {A1, . . . , Aq} and B = {B1, . . . , Bq}. By lemma 2.11, we know

G(D(σ), D(τ)) = [D(σ), D1] ∪ [D1, D2] ∪ · · · [Dq−1, Dq] ∪ [Dq, D
(τ)].

We prove the conclusion by induction on q. If q = 1, then according to GTP algorithm,

D1σ∗ = 0 and D1α = λD
(σ)
α + (1− λ)D

(τ)
α where λ =

||D(τ)
τ∗ ||

||D(σ)
σ∗ ||+||D

(τ)
τ∗ ||

. So

D = tD(σ) + (1− t)(λD(σ)
α + (1− λ)D(τ)

α ).

Now it is easy to check by GTP alogirthm that G(D,D(τ)) = [D,D1] ∪ [D1, D
(τ)]. Suppose

the conclusion holds for q = m (m ≥ 1). Now assume q = m+ 1. Note

G(D(σ), D(τ)) = [D(σ), D1] ∪ [D1, D2] ∪ · · · [Dm, Dm+1] ∪ [Dm+1, D
(τ)].

By the induction hypothesis, we have G(D,Dm+1) = [D,D1] ∪G(D1, Dm+1). Therefore,

G(D,D(τ)) = G(D,Dm+1) ∪ [Dm+1, D
(τ)] = [D,D1] ∪G(D1, D

(τ)).
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Example 2.11 (A Geodesic Triangle in 6-Space)
Consider a flag complex Ω with 6 vertices 1, 2, 3, 4, 5 and 6, where the maximal dimensional
cliques are {1, 2, 3}, {2, 3, 4}, {3, 4, 5} and {4, 5, 6}. Then the corresponding global NPC
orthant space O(Ω) has 4 orthants with dimension 3. We use six coordinates to denote each
point. Note the four orthants can be embedded in R3 by setting l4 = −l1, l5 = −l2, l6 = −l3
for any (l1, l2, l3, l4, l5, l6) ∈ O(Ω). Consider the polyhedral complex made of four polytopes
OABH, OFHBD, OFED and OFEC in the four different orthants respectively, which fit
together along three faces OBH, OFD and OFE, where

O = (0, 0, 0, 0, 0, 0), A = (4, 6, 6, 0, 0, 0), B = (0, 5, 8, 0, 0, 0), C = (0, 0, 0, 1, 2, 3)

H = (0,
14

19
,
14

19
, 0, 0, 0), D = (0, 0,

1

7
,
5

7
, 0, 0), F = (0, 0, 0,

14

25
, 0, 0), E = (0, 0, 0,

8

11
,

1

11
, 0).

Denote the polyhedral complex by G and denote polytopes OABH, OFHBD, OFED and
OFEC by G1, G2, G3 and G4 respectively. We draw G in R3, see Figure 1. The main goal of
this example is to show G = conv({A,B,C}).

Figure 1: Geodesic Triangle conv({A,B,C})

First, we show G ⊂ conv({A,B,C}), we only need to show the eight points
O,A,B,C,H,D, F and E (the vertices of the polytopes Gi (i = 1, 2, 3, 4)) are contained
in conv({A,B,C}). It is easy to check by GTP algorithm that G(A,C) = [A,O]∪ [O,C] and
G(B,C) = [B,D]∪[D,E]∪[E,C]. So by Definition 3.4, O,A,B,C,D,E ∈ conv({A,B,C}).
It is easy to check by GTP algorithm again that G(A,E) = [A,X]∪ [X, Y ]∪ [Y,E] where X =
(0, 11

13
, 12

13
, 0, 0, 0) and Y = (0, 0, 6

67
, 44

67
, 0, 0). By Definition 3.4, X ∈ conv({A,B,C}) and

hence G(B,X) = [B,X] ⊂ conv({A,B,C}). Now it is easy to check that S = 9
22
B+(1− 9

22
)X

and thus S ∈ conv({A,B,C}). By GTP algorithm, we get G(S,C) = [S, F ] ∪ [F,C] and
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therefore F ∈ conv({A,B,C}). Finally, by GTP algorithm, we get G(A,F ) = [A,H]∪[H,F ]
and hence H ∈ conve({A,B,C}).

Now in order to prove conv({A,B,C}) ⊂ G, we prove G is geodesically convex. We only
need to show for any D(σ) ∈ Gi and D(σ) ∈ Gj (i 6= j), G(D(σ), D(τ)) ⊂ G. If i = j + 1 or
j = i + 1, it is easy to check that Gi ∪ Gj is convex in R3 and hence the conclusion holds.
Now we discuss the three non-trivial cases below.

(I) For i = 1 and j = 3, it is easy to check that G1 ∪ G2 ∪ G3 is convex in R3. So the
geodesic between D(σ) and D(τ) is a straight line in R3 and the straight line is contained
in G1 ∪ G2 ∪ G3.

(II) For i = 2 and j = 4, it is easy to check that F is strictly contained in the Euclidean
triangle CBH. Compute the intersect point of line FC and interval BH, we get
(0, 28

11
, 42

11
, 0, 0, 0). Denote this point by S. It is seen that if D(σ) belongs to the polytope

OSBDF , then G(D(σ), D(τ)) is contained in the union of OSBDF and G3 ∪ G4 since
this union is the polytope OSBC in R3. Now we only need to show if D(σ) belongs to
the polytope OSHF , then the conclusion holds. Assume

D(σ) = λ1F + λ2H + λ3S + λ4O = (0,
14

19
λ2 +

28

11
λ3,

14

19
λ2 +

42

11
λ3,

14

25
λ1, 0, 0)

D(τ) = β1F + β2E + β3C + β4O = (0, 0, 0,
14

25
β1 +

8

11
β2 + β3,

1

11
β2 + 2β3, 3β3)

where
Σiλi = 1 (2)

Σiβi = 1 (3)

λi, βi ≥ 0 (4)

Note σ = {2, 3, 4} and τ = {4, 5, 6} (σ ∩ τ = {4}). According to GTP algorithm, we
have two cases below.

(i) Suppose the ordered partitions w.r.t G(D(σ), D(τ)) are {{2, 3}} and {{5, 6}}. According
to the condition (P2) in GTP algorithm, we have

14
19
λ2 + 28

11
λ3

1
11
β2 + 2β3

>
14
19
λ2 + 42

11
λ3

3β3

(5)

Without loss of generality, we assume that β2 and β3 are not 0 at the same time
(otherwise, D(σ) and D(τ) are in the same orthant). Then (5) is equivalent to

3β3(
14

19
λ2 +

28

11
λ3)− (

14

19
λ2 +

42

11
λ3)(

1

11
β2 + 2β3) > 0 (6)

According to Lemma 2.11, G(D(σ), D(τ)) = [D(σ), D1] ∪ [D1, D
(τ)]. According to GTP

algorithm, we compute

D1 = (0, 0, 0, λ
14

25
λ1 + (1− λ)(

14

25
β1 +

8

11
β2 + β3), 0, 0)
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where λ =
1
11

√
β2
2+44β2β3+1573β2

3

1
11

√
β2
2+44β2β3+1573β2

3+ 14
209

√
242α2

2+2090α2α3+4693α2
3

. In order to show D1 ∈ G, we

only need to show D1 ∈ [O,F ], i.e.,

λ
14

25
λ1 + (1− λ)(

14

25
β1 +

8

11
β2 + β3) ≤ 14

25
(7)

We substitute α1 = 1− α2 − α3 − α4 and β1 = 1− β2 − β3 − β4 into (6) and find (6)
is equivalent to

−2926
√
β2
2 + 44β2β3 + 1573β2

3(λ2 + λ3 + λ4) + 14
√

242λ2
2 + 2090λ2λ3 + 4693λ2

3(46β2 + 121β3 − 154β4)

5225
√
β2
2 + 44β2β3 + 1573β2

3 + 3850
√

242λ2
2 + 2090λ2λ3 + 4693λ2

3

≤ 0 (8)

Under the assumption that β2 and β3 are not 0 at the same time, the denominator in
(7) is strictly positive. (7) is equivalent to

− 2926
√
β2
2 + 44β2β3 + 1573β2

3(λ2 + λ3 + λ4) + 14
√

242λ2
2 + 2090λ2λ3 + 4693λ2

3(46β2 + 121β3 − 154β4) ≤ 0 (9)

If 46β2 + 121β3 − 154β4 ≤ 0, then (8) holds naturally. If 46β2 + 121β3 − 154β4 > 0,
then (8) is equivalent to

2926
2
(β

2
2 + 44β2β3 + 1573β

2
3)(λ2 + λ3 + λ4)

2 − 14
2
(242λ

2
2 + 2090λ2λ3 + 4693λ

2
3)(46β2 + 121β3 − 154β4)

2 ≥ 0 (10)

Let
f1 = 3β3(

14

19
λ2 +

28

11
λ3)− (

14

19
λ2 +

42

11
λ3)(

1

11
β2 + 2β3)

f2 = 46β2 + 121β3 − 154β4

f3 = 1− λ2 − λ3 − λ4

f4 = 1− β2 − β3 − β4

f5 = 2926
2
(β

2
2 + 44β2β3 + 1573β

2
3)(λ2 + λ3 + λ4)

2 − 14
2
(242λ

2
2 + 2090λ2λ3 + 4693λ

2
3)(46β2 + 121β3 − 154β4)

2

Now we only need prove that if f1 > 0, f2 > 0, f3 ≥ 0, f4 ≥ 0 and λi, βi ≥ 0
(i = 2, 3, 4), then f5 ≥ 0. We show how to prove by cylindrical algebraic decomposition
(CAD) tool if f1 > 0, f2 > 0, f3 > 0, f4 > 0 and λi, βi > 0 (i = 2, 3, 4), then f5 ≥ 0.
For the case f3 = 0 or f4 = 0 or some λi = 0 or some βi = 0, we can similarly do it.
Let f = Π4

i=2λiβiΠ
5
i=1fi. By the theory of real algebraic geometry, we know that f 6= 0

is a finite union of open connected sets in R6 and the signs of fi (i = 1, 2, 3, 4, 5) and
λi, βi (i = 2, 3, 4) don’t change over each open connected set. By CAD tool, we can
theoretically compute at least one rational point with all positive coordinates, namely
sample point, in each open connected set and then check the signs of fi (i = 1, 2, 3, 4, 5)
at each of the sample point. However, practically, we can not compute the sample points
for f 6= 0 in reasonable time due to the high complexity. Remark that by Lemma 3.10,
we only need to check the cases that D(σ) belongs to some face of OFHS and D(τ)

belongs to some face of OFEC. That means when we compute sample points of f 6= 0,
we can compute 9 smaller cases. In each case, we assume that λk (k is one number
among 2, 3, 4) and βt (t is one number among 2, 3, 4) are 0, which saves computational
time. For instance, we substitute λ2 = 0 and β3 = 0 into f and then we obtain 465
sample points. By checking each sample point, we confirm that if f1 > 0, f2 > 0,
f3 > 0, f4 > 0 and λi, βi > 0 (i = 2, 3, 4), then f5 ≥ 0.
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(ii) Suppose the ordered partitions w.r.t G(D(σ), D(τ)) are {{2}, {3}} and {{5}, {6}}. The
proof is similarly as that in (i).

(III) For i = 1 and j = 4, we have four cases below.

(i) If the geodesic path is cone path, then the conclusion holds since the only break point
is O.

(ii) Suppose the ordered partitions w.r.t G(D(σ), D(τ)) are {{1}, {2, 3}} and {{4}, {5, 6}}.
Similarly as the proof in (II), we can check that the first break point D1 ∈ G(D(σ), D(τ))
belongs to the face OBH and hence [D(σ), D1] ∈ G1. By the conclusion (II), we see
that G(D1, D

(τ)) ∈ G2 ∪ G3 ∪ G4. Therefore, G(D(σ), D(τ)) ∈ G.

(iii) Suppose the ordered partitions are {{1}, {2}, {3}} and {{4}, {5}, {6}}. The proof is
similar as that in (ii).

(iv) Suppose the ordered partitions are {{1, 2}, {3}} and {{4, 5}, {6}}. The proof is similar
as that in (ii).

Theorem 2.12
Every geodesic polytope in global NPC orthant space contains the structure of a finite poly-
hedral complex. That complex can have the full dimension n− 2 even for triangles (k = 3).

Proof. GOAL. THE PROOF GOES HERE.
BOTH STATEMENTS ARE TERRIFIC NEW RESULTS,
ASSUMING THEY ARE TRUE.

3 Tropical Convexity

4 Generalization to Tropical Linear Spaces
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