Linear Algebra and its Applications with R: Solution Set

Ruriko Yoshida

Chapter 1

Section 1.2

Section 1.2.5

Quiz 1: False
Quiz 2: False
Quiz 3: False
Quiz 4: False
Quiz 5: True
Quiz 6: False
Quiz 7: True
Quiz 8: False
Quiz 9: False
Quiz 10: False
Quiz 11: True
Quiz 12: False
Quiz 13: (ii)
Quiz 14: (iv)
Quiz 15: (iv)
Quiz 16: (ii)
Quiz 17: (iii)
Quiz 18: (i)
Quiz 19: (i)

Section 1.2.6

Exercise 1.6:

1. 3
2. 4
3.

$$
\left[\begin{array}{llll}
5 & 16 & 3 & 16
\end{array}\right]\left[\begin{array}{llll}
6 & 19 & 9 & 5
\end{array}\right]\left[\begin{array}{cccc}
10 & 17 & 19 & 13
\end{array}\right]
$$

4.

$$
\left[\begin{array}{c}
5 \\
6 \\
10
\end{array}\right],\left[\begin{array}{c}
16 \\
19 \\
17
\end{array}\right],\left[\begin{array}{c}
3 \\
9 \\
19
\end{array}\right],\left[\begin{array}{c}
16 \\
5 \\
13
\end{array}\right] .
$$

Section 1.3

Section 1.3.5

Quiz 20: True Quiz 21: False Quiz 22: True Quiz 23: False Quiz 24: False Quiz 25: True

Section 1.3.6

Exercise 1.15:

1. Yes
2. Unique
3. $x_{1}=6, x_{2}=1 / 2$.

Exercise 1.17:

1. Yes
2. Unique
3. $x_{1}=0.6969697, x_{2}=-2.7575758$.

Exercise 1.19:

1. No
2. No solution
3. NA

Exercise 1.21:

1. Yes
2. Unique
3. $x_{1}=0.8469945, x_{2}=-0.1475410, x_{3}=7.0546448$.

Exercise 1.23:

1. Yes
2. Unique
3. $x_{1}=-1.0986079, x_{2}=0.1392111, x_{3}=-0.8016241$.

Exercise 1.25:

1. Yes
2. Unique
3. $x_{1}=2.657895, x_{2}=2.052632, x_{3}=-2.710526$.

Exercise 1.27:

1. $n \neq 1$.
2. $x_{1}=8 /(h-1), x_{2}=\frac{5 h+3}{2(h-1)}$.

Exercise 1.31: Solve the system of equations such that

$$
\begin{gathered}
x_{1}+x_{2}=2200 \\
1.5 x_{1}+4 x_{2}=5050 .
\end{gathered}
$$

The solution is $x_{1}=1500, x_{2}=700$. The number of children is 1500 and the number of adults is 700 .

Exercise 1.31: Let d be the distance and t be the time running. So we have

$$
\begin{array}{llc}
d & = & 0.2 t \\
d & = & 0.5(t-8.5) .
\end{array}
$$

So we have the system of linear equations such that

$$
\begin{array}{ccc}
d-0.2 t & = & 0 \\
d-0.5 t & = & -4.25
\end{array}
$$

The solution is $d=17 / 6, t=85 / 6$. So $17 / 6 \mathrm{~km}$.
Exercise 1.31: Let x_{1} be the number of chocolate cupcakes, x_{2} be the number of strawberry cupcakes, and x_{3} be the number of lemon cupcakes. We have the system of linear equations such that

$$
\begin{array}{ccccc}
x_{1} & +x_{2}+x_{3} & = & 24 \\
0.6 x_{1} & +0.4 x_{2} & +0.3 x_{3} & = & 61 / 5 \\
x_{1} & -2 x_{2} & -2 x_{3} & = & 0 .
\end{array}
$$

The solution is $x_{1}=16, x_{2}=2, x_{3}=6$.

Section 1.4

Section 1.4.5

Quiz 27: False
Quiz 28: False
Quiz 29: True
Quiz 30: False
Quiz 31: True
Quiz 32: True
Quiz 33: False
Quiz 34: False
Quiz 35: False
Quiz 36: 2
Quiz 37: 1
Quiz 38: 3
Quiz 39: 3
Quiz 40: 2
Quiz 41: 1

Section 1.4.6

Exercise 1.38: The system of linear equations

$$
\begin{array}{cccc}
x_{1} & -6 x_{2} & = & 3 \\
-x_{1} & +2 x_{2} & = & -1
\end{array}
$$

has the reduced echelon form:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -0.5
\end{array}\right]
$$

So we have a solution $x_{1}=0, x_{2}=-0.5$.
Exercise 1.40: The system of linear equations

$$
\begin{gathered}
-5 x_{1}+5 x_{2}-x_{3}=57 \\
-7 x_{1}-2 x_{2}-4 x_{3}=21 \\
x_{1}+3 x_{2}+4 x_{3}=3
\end{gathered}
$$

has the reduced echelon form:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2.697479 \\
0 & 1 & 0 & 7.815126 \\
0 & 0 & 1 & -4.436975
\end{array}\right]
$$

So we have a solution $x_{1}=-2.697479, x_{2}=7.815126, x_{3}=-4.436975$.
Exercise 1.43: The system of linear equations

$$
\begin{aligned}
& 5 x_{1}+10 x_{2}-5 x_{3}=-5 \\
& -10 x_{2}+3 x_{3}=-5 \\
& 10 x_{1}+6 x_{2}-9 x_{3}=-1
\end{aligned}
$$

has the reduced echelon form:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -5
\end{array}\right]
$$

So we have a solution $x_{1}=-4, x_{2}=-1, x_{3}=-5$.

